Author:
Dragomirova Mila,Antonova Albena,Stoykova Slavena,Mihova Gergana,Grigorova Denitsa
Abstract
Abstract
Background
The prevalence of myopia has increased in recent years, with changes being dynamic and uneven in different regions. The purpose of this study is to evaluate the prevalence of visual impairment caused by myopia in Bulgarian school children, associated risk factors, and health care coverage.
Methods
A cross-sectional study among 1401 children (mean age 10.38, standard deviation 2.70) is conducted in three locations in Bulgaria from 2016 to 2020. Refractive error is measured with an auto-refractor in the absence of cycloplegia, the visual acuity is assessed without refractive error correction. A paper-based preliminary questionnaire is used to collect data on previous eye examinations, prescribed optical vision correction, regularity of wearing corrective glasses and risk factors.
Results
Children with myopic objective refraction ≤ -0.75 D and decimal visual acuity ≤ 0.8 on at least one of the eyes are 236 out of 1401 or 16.85%. The prevalence of myopia varies depending on age, geographical location, and school profile. The rate of myopic children in age group 6–10 is 14.2% compared to 19.9% in age group 11–15. The prevalence of myopic children in the urban populations is 31.4% (capital) and 19.9% (medium-sized town) respectively, and only 8.4% in the rural population. Our results show 53% increase of the prevalence of myopia in the age group 11–15 compared to a 2009 report. The analysis of data associated with health care coverage factors of all myopic pupils shows that 71.6% had a previous eye examination, 43.2% have prescription for corrective glasses, 27.5% wear their glasses regularly. Risk factors for higher odds of myopia are gender (female), age (adolescence), and parents with impaired vision. Residence in a small town and daily sport activities correspond to lower odds for myopia. The screen time (time in front of the screen calculated in hours per day) is self-reported and is not associated with increased odds of myopia when accounted for the other risk factors.
Conclusions
The prevalence of myopia in this study is higher compared to previous studies in Bulgaria. Additional studies would be helpful in planning adequate prevention and vision care.
Publisher
Springer Science and Business Media LLC
Subject
Ophthalmology,General Medicine
Reference27 articles.
1. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.
2. Rudnicka AR, Kapetanakis VV, Wathern AK, et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol. 2016;100:882–90.
3. World Health Organization. Brien Holden Vision Institute. The impact of myopia and high myopia. https://www.who.int/blindness/causes/MyopiaReportforWeb.pdf. Published March 2015. Accessed 27/03/22.
4. Ikuno Y. Overview of the complications of high myopia. Retina. 2017;37(12):2347–51.
5. Naidoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systematic review, meta-analysis, and modeling. Ophthalmology. 2018;126:338–46.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献