Preliminary research on LncRNA ATP2B2-IT2 in neovascularization of diabetic retinopathy

Author:

Yuan Yuan,Zhu Anming,Zeng Lan,Wang Xiaocong,Zhang Ying,Long Xiaofeng,Wu Jie,Ye Meng,He Junhao,Tan Wei

Abstract

Abstract Objective Diabetic retinopathy (DR) is a common complication of diabetes, and recent findings have shown that long noncoding RNAs (lncRNAs) may be involved in its pathogenesis. Through bioinformatics analysis, we found that lncRNA ATP2B2-IT2 may be involved in this process. This study primarily investigated the expression of the lncRNA ATP2B2-IT2 in human retinal microvascular endothelial cells (HRMECs) under high-glucose conditions and its effects on HRMEC proliferation, migration, and neovascularization. Methods We used RT‒PCR to assess the expression levels of lncRNA ATP2B2-IT2 and vascular endothelial growth factor (VEGF) in HRMECs under normal glucose (5.5 mmol/L) and high glucose (30 mmol/L) conditions. HRMECs were subsequently divided into four groups: the normal glucose (NG), high glucose (HG), high glucose with lncRNA ATP2B2-IT2 silencing (HG + si-lncRNA ATP2B2-IT2), and high glucose with silencing control (HG + si-NC) groups. The expression levels of the lncRNA ATP2B2-IT2 and VEGF in each group were determined using RT‒PCR. Thereafter, cell proliferation, migration, and neovascularization were assessed using CCK-8, Transwell, and tube formation assays, respectively. Results RT‒PCR revealed that the expression levels of the lncRNA ATP2B2-IT2 and VEGF were greater in the HG group than in the NG group (P < 0.05). After silencing of the lncRNA ATP2B2-IT2, the expression of VEGF decreased significantly (P < 0.05). Subsequent CCK-8, Transwell, and tube formation assays demonstrated that compared to those in the NG group, the HRMECs in the HG group exhibited significantly increased proliferation, migration, and neovascularization (P < 0.05). However, after silencing of the lncRNA ATP2B2-IT2, the proliferation, migration, and neovascularization of HRMECs were significantly decreased in the HG + si-lncRNA ATP2B2-IT2 group compared to those in the HG group (P < 0.05). Conclusion LncRNA ATP2B2-IT2 may promote the proliferation, migration and neovascularization of HRMECs under high-glucose conditions.

Funder

National Nature Science Foundation of China

R&D Program of The First People’s Hospital of Zunyi

Science and Technology Fund Project of Guizhou Provincial Health Commission in 2020

Science and Technology Planning Project of Zunyi

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3