Author:
Duan Yajian,Wu Wenyi,Cui Jing,Matsubara Joanne Aiko,Kazlauskas Andrius,Ma Gaoen,Li Xiaorong,Lei Hetian
Abstract
Abstract
Background
Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)β suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRβ in RPE cells remained elusive.
Methods
The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRβ short of a PDGF-binding domain in the RPEM cells lacking PDGFRβ. Western blot was employed to analyze expression of PDGFRβ and α-smooth muscle actin, and signaling events (p-PDGFRβ and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study.
Results
Expression of a truncated PDGFRβ lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRβ and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRβ can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics.
Conclusion
The data shown here will improve our understanding of the mechanism by which PDGFRβ can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRβ transactivation (ligand-independent activation).
Funder
Health Commission of Shanxi Province
Research Project Supported by Shanxi Scholarship Council of China
Shanxi Bethune Hospital Foundation
Shanxi Bethune Hospital Education and Teaching Reform Foundation
Natural Science Foundation of Shanxi province
Natural Science Foundation of Hunan Province
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Introduction plan of high-level foreign experts
Publisher
Springer Science and Business Media LLC
Subject
Ophthalmology,General Medicine
Reference46 articles.
1. Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR, Rosenbaum JT. Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest Ophthalmol Vis Sci. 1994;35:3649–63.
2. Charteris DG. Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol. 1995;79:953–60.
3. Pennock S, Haddock LJ, Eliott D, Mukai S, Kazlauskas A. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? Prog Retin Eye Res. 2014;40:16–34.
4. Schiff L, Boles NC, Fernandes M, Nachmani B, Gentile R, Blenkinsop TA. P38 inhibition reverses TGFbeta1 and TNFalpha-induced contraction in a model of proliferative vitreoretinopathy. Commun Biol. 2019;2:162.
5. Abdullatif AM, Macky TA, Abdullatif MM, Nassar K, Grisanti S, Mortada HA, Soliman MM. Intravitreal decorin preventing proliferative vitreoretinopathy in perforating injuries: a pilot study. Graefes Arch Clin Exp Ophthalmol. 2018;256:2473–81.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献