Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation

Author:

Abdelmotaal HazemORCID,Sharaf MohamedORCID,Soliman WaelORCID,Wasfi Ehab,Kedwany Salma M.ORCID

Abstract

Abstract Background To assess the ability of the pix2pix generative adversarial network (pix2pix GAN) to synthesize clinically useful optical coherence tomography (OCT) color-coded macular thickness maps based on a modest-sized original fluorescein angiography (FA) dataset and the reverse, to be used as a plausible alternative to either imaging technique in patients with diabetic macular edema (DME). Methods Original images of 1,195 eyes of 708 nonconsecutive diabetic patients with or without DME were retrospectively analyzed. OCT macular thickness maps and corresponding FA images were preprocessed for use in training and testing the proposed pix2pix GAN. The best quality synthesized images using the test set were selected based on the Fréchet inception distance score, and their quality was studied subjectively by image readers and objectively by calculating the peak signal-to-noise ratio, structural similarity index, and Hamming distance. We also used original and synthesized images in a trained deep convolutional neural network (DCNN) to plot the difference between synthesized images and their ground-truth analogues and calculate the learned perceptual image patch similarity metric. Results The pix2pix GAN-synthesized images showed plausible subjectively and objectively assessed quality, which can provide a clinically useful alternative to either image modality. Conclusion Using the pix2pix GAN to synthesize mutually dependent OCT color-coded macular thickness maps or FA images can overcome issues related to machine unavailability or clinical situations that preclude the performance of either imaging technique. Trial registration ClinicalTrials.gov Identifier: NCT05105620, November 2021. “Retrospectively registered”.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3