Changes in optical coherence tomography biomarkers in eyes with advanced idiopathic epiretinal membrane treated with dexamethasone implantation

Author:

Nie Zetong,Li Wenbo,Duan Naxin,Wei Jiaoting,Zhang Xiang,Guo Haoxin,Bai Siqiong,Li Xiaorong,Hu Bojie

Abstract

Abstract Purpose To investigate the effects of vitrectomy and intravitreal dexamethasone (DEX) implantation on retinal biomarkers in patients with advanced idiopathic epiretinal membrane (IERM) and to evaluate this treatment’s anatomical and functional outcomes. Methods This retrospective study included 41 patients with advanced IERM who underwent vitrectomy and were divided into a pars plana vitrectomy (PPV) group (20 eyes) and a dexamethasone (DEX) group (21 eyes) based on intravitreal DEX implantation. We collected data on best-corrected visual acuity (BCVA), central macular thickness (CMT), disorganization of the retinal inner layers (DRIL), subretinal fluid, intraretinal cystoid changes (IRC), integrity of the inner-outer segment layer, and intraocular pressure. Results BCVA improved significantly in both groups; the DEX group had a higher visual acuity gain at 1 and 6 months (P = 0.002 and 0.023, respectively). Postoperative CMT gradually decreased in both groups, with the DEX group showing a greater decrease at 1 and 6 months (P = 0.009 and 0.033, respectively). Six months after surgery, the DRIL and IRC grades in the DEX group were significantly improved compared to those in the PPV group (P = 0.037 and 0.038, respectively). Multivariate regression analyses revealed that patients with intraoperative DEX implants were more likely to have a significant CMT reduction (≥ 100 μm) from baseline (odds ratio (OR), 9.44; 95% confidence intervals (CI), 1.58–56.56; P = 0.014) at 6 months and less likely to exhibit DRIL at 6 months postoperatively (OR, 0.08; 95% CI, 0.01–0.68; P = 0.021). Conclusion Vitrectomy combined with intravitreal DEX implantation facilitates the recovery of postoperative visual acuity and improvement of anatomical outcomes in patients with advanced IERM, effectively reducing CMT and improving DRIL.

Funder

Natural Science Foundation of Tianjin City

Tianjin Key Medical Discipline (Specialty) Construction Project

Science & Technology Development Fund of the Tianjin Education Commission for Higher Education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3