Abstract
Abstract
Background
The polymorphisms rs6885224 and rs634990 have been reported to be associated with high myopia in many populations. As there is still no report on whether these two SNPs are associated with myopia in the Tujia and Miao minority areas of China, we conducted a replication study to evaluate the association of single-nucleotide polymorphisms in the regions 5p15.2 and 15q14 with high myopia in Tujia and Miao Chinese populations.
Methods
We performed a comprehensive meta-analysis of 5831 cases and 7055 controls to assess whether rs6885224 in the 5p15.2 region and rs634990 in the 15q14 region are associated with high myopia. Our replication study enrolled 804 individuals. Genomic DNA was extracted from venous leukocytes, and these two SNPs were genotyped by Sanger sequencing. Allele and genotype frequencies were analysed using χ2 tests, and ORs and 95% CIs were calculated.
Results
According to the results of the meta-analysis, rs6885224 in the CTNND2 gene showed no association with myopia [p = 0.222, OR = 1.154, 95% CI (0.917–1.452)]. Conversely, rs634990 in the 15q14 region did exhibit a significant correlation with myopia [p = 7.270 × 10− 7, OR = 0.817, 95% CI (0.754–0.885)]. In our replication study, no association with high myopia in the Tujia and Miao populations was found for rs634990 or rs6885224. The following were obtained by allele frequency analysis: rs6885224, p = 0.175, OR = 0.845, and 95% CI = 0.662–1.078; rs634990, p = 0.087, OR = 0.84, and the 95% CI = 0.687–1.026. Genotype frequency analysis yielded p = 0.376 for rs6885224 and p = 0.243 for rs634990.
Conclusions
Our meta-analysis results show that rs634990 was significantly associated with myopia but that rs6885224 was not. Nevertheless, in our replication study, these two SNPs showed no association with myopia in the Tujia and Miao Chinese populations. This is the first report involving Tujia and Miao ethnic groups from Enshi minority areas. However, the sample size needs to be expanded and more stringent inclusion and exclusion criteria need to be formulated to verify the findings.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Ophthalmology,General Medicine
Reference77 articles.
1. Tedja MS, Wojciechowski R, Hysi PG, Eriksson N, Furlotte NA, Verhoeven VJM, Iglesias AI, Meester-Smoor MA, Tompson SW, Fan Q, et al. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nat Genet. 2018;50(6):834–48.
2. Hopf S, Pfeiffer N. Epidemiology of myopia. Ophthalmologe. 2017;114(1):20–3.
3. Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SK. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Invest Ophthalmol Vis Sci. 2000;41(9):2486–94.
4. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O'Colmain BJ. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol (Chicago, Ill : 1960). 2004;122(4):495–505.
5. He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci. 2009;86(1):40–4.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献