Accuracy of axial length, keratometry, and refractive measurement with Myopia Master in children with ametropia

Author:

Ye Yuhao,Zhao Yu,Han Tian,Zhang Xiaoyu,Miao Huamao,Qin Bing,Zhou Xingtao

Abstract

Abstract Purpose To evaluate the accuracy of axial length, keratometry, and refractive measurement with Myopia Master in ametropic children. Methods In this randomized prospective cross-sectional study, 125 children with ametropia (250 eyes) were recruited (55 boys and 70 girls; age range: 3–15 years). All examinations were performed under full cycloplegic conditions. Measurements of axial length (AL), keratometry, and autorefraction acquired with the Myopia Master were compared with those from the IOLMaster 500, IOLMaster 700, Nidek ARK-1, and manifest refraction. The differences between the different methods were analyzed, and their correlation was assessed by interclass correlation coefficients (ICCs), Bland–Altman plot, and correlation test. Results The ALs (mm) measured with Myopia Master, IOLMaster 500, and IOLMaster 700 were 23.67 ± 1.26, 23.68 ± 1.26, and 23.70 ± 1.25, respectively. The mean values and standard deviations for AL and keratometry readings from these devices were similar (P ≥ 0.059). The ICC analysis also revealed high consistency between the measurements (ICC ≥ 0.943). Additionally, the correlation coefficients were relatively high (r > 0.9, p < 0.001). Although the results of refraction obtained with the Myopia Master were slightly higher than those with manifest refraction (P ≤ 0.024), the agreement between these two measurements was excellent (ICC ≥ 0.858). The percentage of points outside the limits of agreements was < 5.22% in Bland–Altman plots for all analyses. Conclusions Myopia Master could be a highly efficient tool for clinical use as a three-in-one system (AL, keratometry, and refractive measurements) for screening in children with ametropia.

Funder

Shanghai Sailing Program

The National Natural Science Foundation of China

Project of Shanghai Science and Technology

Joint Research Project of New Frontier Technology in Municipal Hospitals

Clinical Research Plan of SHDC

Project of Shanghai Xuhui District Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3