Self-supervised pre-training for joint optic disc and cup segmentation via attention-aware network

Author:

Zhou Zhiwang,Zheng Yuanchang,Zhou Xiaoyu,Yu Jie,Rong Shangjie

Abstract

AbstractImage segmentation is a fundamental task in deep learning, which is able to analyse the essence of the images for further development. However, for the supervised learning segmentation method, collecting pixel-level labels is very time-consuming and labour-intensive. In the medical image processing area for optic disc and cup segmentation, we consider there are two challenging problems that remain unsolved. One is how to design an efficient network to capture the global field of the medical image and execute fast in real applications. The other is how to train the deep segmentation network using a few training data due to some medical privacy issues. In this paper, to conquer such issues, we first design a novel attention-aware segmentation model equipped with the multi-scale attention module in the pyramid structure-like encoder-decoder network, which can efficiently learn the global semantics and the long-range dependencies of the input images. Furthermore, we also inject the prior knowledge that the optic cup lies inside the optic disc by a novel loss function. Then, we propose a self-supervised contrastive learning method for optic disc and cup segmentation. The unsupervised feature representation is learned by matching an encoded query to a dictionary of encoded keys using a contrastive technique. Finetuning the pre-trained model using the proposed loss function can help achieve good performance for the task. To validate the effectiveness of the proposed method, extensive systemic evaluations on different public challenging optic disc and cup benchmarks, including DRISHTI-GS and REFUGE datasets demonstrate the superiority of the proposed method, which can achieve new state-of-the-art performance approaching 0.9801 and 0.9087 F1 score respectively while gaining 0.9657 $$DC_{disc}$$ D C disc and 0.8976 $$DC_{cup}$$ D C cup . The code will be made publicly available.

Funder

Project of Development and Reform Commission of Jiangxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3