Thickness profiles of the corneal epithelium along the steep and flat meridians of astigmatic corneas after orthokeratology

Author:

Zhou Jiaqi,Xue Feng,Zhou Xingtao,Naidu Rajeev Krishnan,Qian YishanORCID

Abstract

Abstract Background The aim of this study was to investigate the changes in corneal epithelial thickness along the principle meridians of astigmatic corneas after six months of overnight spherical myopic orthokeratology (OK) lens wear. Methods This is a prospective study. Fifty-seven subjects with up to 1.50 diopters (D) of corneal toricity wore spherical OK lenses for 6 months. Evaluations of OK lens fit, visual acuity, refractions and corneal toricity (CT) were performed. Fourier-domain optical coherence tomography (FD-OCT) was conducted to measure the corneal epithelial thickness (ET) along the principle meridians of corneal toricity over a diameter of 6 mm. The means of △ET of the same diameter at individual meridians (△ETSm and △ETFm) were calculated and compared. Results Visual acuity and refraction improved significantly after OK lens wear. △ETFm thinned more than △ETSm (P = 0.027) at 1.5 mm in radius. △ETSm thickened more than △ETFm at 2.5 mm (P = 0.019) and 3.0 mm (P = 0.036).∣△ETSm - △ETFm∣ were significantly correlated with the baseline central CT at 2.0 mm, 2.5 mm and 3.0 mm. ∣△ETSm - △ETFm∣was significantly correlated with the baseline peripheral CT at 2.5 mm. Conclusions Overnight wear of spherical OK lenses resulted in differential changes in the thickness profiles of the corneal epithelium between the steep and flat meridians in eyes with corneal toricity.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3