Variants identified by next-generation sequencing cause endoplasmic reticulum stress in Rhodopsin-associated retinitis pigmentosa

Author:

Wang Yue,Chen Xi,Gao Xiang,Zhao Andi,Zhao Chen,Chen Xuejuan

Abstract

Abstract Background Rhodopsin (RHO) is the most well-known genetic cause of autosomal dominant retinitis pigmentosa (adRP). This study aimed to investigate the genetic cause of a large Chinese adRP family and assess the pathogenicity of the detected RHO mutant. Methods Routine ocular examinations were conducted on all participants. Next-generation sequencing with targeted capture was performed to screen mutations in 179 genes associated with hereditary retinal diseases and 10 candidate genes. Variants detected by NGS were validated by Sanger sequencing and evaluated for pathogenicity. Fragments of mutant and wild-type RHO were cloned into the pEGFP-N1 vector and were transfected into different cell lines to observe the cellular localization of the Rhodopsin-GFP fusion protein and evaluate the expression of endoplasmic reticulum (ER) stress markers. RT-PCR analysis was used to detect transfected the splicing of X box-binding protein 1 (XBP1) mRNA, which is a critical factor affecting ER stress. Results Genetic analysis identified a heterozygous missense variant, RHO, c.284 T > C (p.L95P) in this adRP family. Another RHO variant (p.P53R) that we reported previously was also included in further functional assessment. Both misfolded mutant proteins accumulated in the ER in a manner similar to that noted for the classic mutant P23H. Spliced XBP1 was observed in cells transfected with mutants, indicating an increase in ER stress. Conclusions Although the p.L95P variant is not a novel change, it was the first variant to be functionally evaluated and reported in Chinese RP patients. The results in our study provide significant evidence to classify the p.L95P mutation as a class II mutation.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3