Author:
Wiseman Stewart J.,Tatham Andrew J.,Meijboom Rozanna,Terrera Graciela Muniz,Hamid Charlene,Doubal Fergus N.,Wardlaw Joanna M.,Ritchie Craig,Dhillon Baljean,MacGillivray Tom
Abstract
Abstract
Background
Metrics derived from the human eye are increasingly used as biomarkers and endpoints in studies of cardiovascular, cerebrovascular and neurological disease. In this context, it is important to account for potential confounding that can arise from differences in ocular dimensions between individuals, for example, differences in globe size.
Methods
We measured axial length, a geometric parameter describing eye size from T2-weighted brain MRI scans using three different image analysis software packages (Mango, ITK and Carestream) and compared results to biometry measurements from a specialized ophthalmic instrument (IOLMaster 500) as the reference standard.
Results
Ninety-three healthy research participants of mean age 51.0 ± SD 5.4 years were analyzed. The level of agreement between the MRI-derived measurements and the reference standard was described by mean differences as follows, Mango − 0.8 mm; ITK − 0.5 mm; and Carestream − 0.1 mm (upper/lower 95% limits of agreement across the three tools ranged from 0.9 mm to − 2.6 mm). Inter-rater reproducibility was between − 0.03 mm and 0.45 mm (ICC 0.65 to 0.93). Intra-rater repeatability was between 0.0 mm and − 0.2 mm (ICC 0.90 to 0.95).
Conclusions
We demonstrate that axial measurements of the eye derived from brain MRI are within 3.5% of the reference standard globe length of 24.1 mm. However, the limits of agreement could be considered clinically significant. Axial length of the eye obtained from MRI is not a replacement for the precision of biometry, but in the absence of biometry it could provide sufficient accuracy to act as a proxy. We recommend measuring eye axial length from MRI in studies that do not have biometry but use retinal imaging to study neurodegenerative changes so as to control for differing eye size across individuals.
Publisher
Springer Science and Business Media LLC
Subject
Ophthalmology,General Medicine
Reference24 articles.
1. MacGillivray TJ, Trucco E, Cameron JR, Dhillon B, Houston JG, Van Beek EJR. Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol. 2014;87(1040). https://doi.org/10.1259/bjr.20130832.
2. Ţălu S-D. Optical coherence tomography in the diagnosis and monitoring of retinal diseases. ISRN Biomedical. Imaging. 2013;1–13. https://doi.org/10.1155/2013/910641.
3. Chen S-J, Lu P, Zhang W-F, Lu J-H. High myopia as a risk factor in primary open angle glaucoma. Int J Opthalmol. 2012;5(6):750–3. https://doi.org/10.3980/j.issn.2222-3959.2012.06.18.
4. Gupta D, Moore D, Bojikian K, Slabaugh M. Relationship between eye shape and the risk for glaucoma. ARVO Annu Meet Abstr. 2013;54(15). https://iovs.arvojournals.org/article.aspx?articleid=2148316.
5. Grødum K, Heijl A, Bengtsson B. Refractive error and glaucoma. Acta Ophthalmol. Scand. 2001;79:560–6.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献