Evaluation of the recombinant proteins RlpB and VacJ as a vaccine for protection against Glaesserella parasuis in pigs

Author:

Hau Samantha J., ,Luan Shi-Lu,Loving Crystal L.,Nicholson Tracy L.,Wang Jinhong,Peters Sarah E.,Seilly David,Weinert Lucy A.,Langford Paul R.,Rycroft Andrew N.,Wren Brendan W.,Maskell Duncan J.,Tucker Alexander W.,Brockmeier Susan L.ORCID

Abstract

Abstract Background Glaesserella parasuis, the causative agent of Glӓsser’s disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser’s disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. Results Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. Conclusions It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.

Funder

U.S. Department of Agriculture

Biotechnology and Biological Sciences Research Council

Oak Ridge Institute for Science and Education

Department for Environment, Food and Rural Affairs

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Reference31 articles.

1. Aragon V, Segales J, Oliveira S. Glasser's Disease. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Diseases of Swine. 10th ed. West Sussex: Wiley; 2012. p. 760–9.

2. Kielstein P, Rapp-Gabrielson VJ. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Microbiol. 1992;30(4):862–5.

3. Turni C, Blackall PJ. Serovar profiling of Haemophilus parasuis on Australian farms by sampling live pigs. Aust Vet J. 2010;88(7):255–9.

4. Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am J Vet Res. 2003;64(4):435–42.

5. Miniats OP, Smart NL, Ewert E. Vaccination of gnotobiotic primary specific pathogen-free pigs against Haemophilus parasuis. Can J Vet Res. 1991;55(1):33–6.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3