Author:
Xiong Xinwei,Gong Jishang,Lu Tian,Yuan Liuying,Lan Yuehang,Tu Xutang
Abstract
Abstract
Background
Bacteriophages are prokaryotic viruses that rank among the most abundant microbes in the gut but remain among the least understood, especially in quails. In this study, we surveyed the gut bacteriophage communities in 22 quails at different ages (days 20 and 70) using shotgun metagenomic sequencing. We then systematically evaluated the relationships with gut bacteria and host serum metabolites.
Results
We discovered that Myoviridae and Siphoviridae were the dominant bacteriophage families in quails. Through a random forest and LEfSe analysis, we identified 23 differential bacteriophages with overlapping presence. Of these, 21 bacteriophages (e.g., Enterococcus phage IME-EFm5 and Enterococcus phage IME-EFm1) showed higher abundances in the day 20 group, while two bacteriophages (Bacillus phage Silence and Bacillus virus WPh) were enriched in the day 70 group. These key bacteriophages can serve as biomarkers for quail sexual maturity. Additionally, the differential bacteriophages significantly correlated with specific bacterial species and shifts in the functional capacities of the gut microbiome. For example, Enterococcus phages (e.g., Enterococcus phage EFP01, Enterococcus phage IME-EFm5, and Enterococcus phage IME-EFm1) were significantly (P < 0.001, FDR) and positively correlated with Enterococcus faecalis. However, the relationships between the host serum metabolites and either bacteriophages or bacterial species varied. None of the bacteriophages significantly (P > 0.05, FDR) correlated with nicotinamide riboside and triacetate lactone. In contrast, some differential bacterial species (e.g., Christensenella massiliensis and Bacteroides neonati) significantly (P < 0.05, FDR) correlated with nicotinamide riboside and triacetate lactone. Furthermore, characteristic successional alterations in gut bacteriophages, bacteria, and host serum metabolites across different ages highlighted a sexual maturity transition coexpression network.
Conclusion
This study improves our understanding of the gut bacteriophage characteristics in quails and offers profound insights into the interactions among gut bacteriophages, bacteria, and host serum metabolites during the quail’s sexual maturity transition.
Funder
Jiangxi Joint Key Project of Quail Improvement
Publisher
Springer Science and Business Media LLC