Author:
Fantinati Marco,Priymenko Nathalie,Debreuque Maud
Abstract
Abstract
Background
Bromide is a halide ion of the element bromine usually administered in the form of potassium salt as monotherapy or add-on treatment in epileptic dogs. It is excreted unchanged in the urine and undergoes tubular reabsorption in competition with chloride. Thus, dietary chloride content affects serum bromide concentrations. This is the first published clinical report of bromide toxicosis secondary to a dietary modification of chloride content in an epileptic dog treated with potassium bromide.
Case presentation
A 3-year-old 55-kg neutered male Tibetan Mastiff was evaluated because of a 1-month history of progressive signs including ataxia, lethargy and behaviour changes. The dog was successfully treated for idiopathic epilepsy since the age of 1-year-old with phenobarbital and potassium bromide. Two months prior to presentation, the owners decided to change the dog’s diet without veterinary advice. Physical examination was unremarkable. A 12-kg weight gain was recorded since last follow-up (8 months). Neurological examination revealed severe symmetric 4-limbs ataxia with altered vigilance and intermittent episodes of hyperactivity and aggressive behaviour without significant abnormality of cranial nerves. Serum bromide concentration was high and increased by 103 % since last follow-up. Nutritional evaluation revealed a 53 % decrease of chloride content in the diet before and after dietary transition. Bromide toxicosis was suspected, due to bromide reduced clearance secondary to the decreased dietary chloride content. Potassium bromide treatment was lowered by 15 % without further dietary changes. Neurologic signs progressively improved over the next month, without any seizure. After two months, the serum bromide concentration lowered to the same level measured before dietary modification. After four months, neurological examination was unremarkable.
Conclusions
Dietary chloride content can directly influence serum bromide concentrations, therefore affecting seizure control or contributing to unexpected adverse effects. In the present case, a reduction in chloride intake markedly increased serum bromide concentrations causing bromism. Dietary changes should be avoided in dogs treated with potassium bromide to maintain stable serum bromide levels.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference21 articles.
1. Rossmeisl JH, Inzana KD. Clinical signs, risk factors, and outcomes associated with bromide toxicosis (bromism) in dogs with idiopathic epilepsy. J Am Vet Med Assoc. 2009;234:1425–31.
2. Yohn SE, Morrison WB, Sharp PE. Bromide toxicosis (bromism) in a dog treated with potassium bromide for refractory seizures. J Am Vet Med Assoc. 1992;201(3):468–70.
3. Nichols ES, Trepanier LA, Linn K. Bromide toxicosis secondary to renal insufficiency in an epileptic dog. J Am Vet Med Assoc. 1996;208:231–3.
4. Thornton CS, Haws JT. Bromism in the Modern Day: Case Report and Canadian Review of Bromide Intoxication. J Gen Intern Med. 2020;35:2459–61.
5. Charalambous M, Shivapour SK, Brodbelt DC, et al. Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs. BMC Vet Res. 2016;12:79–123.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献