A novel strategy for optimal component formula of anti-PRRSV from natural compounds using tandem mass tag labeled proteomic analyses
-
Published:2022-05-14
Issue:1
Volume:18
Page:
-
ISSN:1746-6148
-
Container-title:BMC Veterinary Research
-
language:en
-
Short-container-title:BMC Vet Res
Author:
Zhang Hua,Cao Zhigang,Sun Panpan,Khan Ajab,Guo Jianhua,Sun Yaogui,Yu Xiuju,Fan Kuohai,Yin Wei,Li E,Sun Na,Li Hongquan
Abstract
Abstract
Background
Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most important porcine viral diseases which have been threatening the pig industry in China. At present, most commercial vaccines fail to provide complete protection because of highly genetic diversity of PRRSV strains. This study aimed to optimize a component formula from traditional Chinese medicine(TCM)compounds with defined chemical characteristics and clear mechanism of action against PRRSV.
Methods
A total of 13 natural compounds were screened for the anti-PRRSV activity using porcine alveolar macrophages (PAMs). Three compounds with strong anti-PRRSV activity were selected to identify their potential protein targets by proteomic analysis. The optimal compound formula was determined by orthogonal design based on the results of proteomics. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each compound using PAMs. QPCR and western blot were used to investigate the PRRSV N gene and protein expression, respectively. The Tandem Mass Tag (TMT) technique of relative quantitative proteomics was used to detect the differential protein expression of PAMs treated with PRRSV, matrine (MT), glycyrrhizic acid (GA) and tea saponin (TS), respectively. The three concentrations of these compounds with anti-PRRSV activity were used for orthogonal design. Four formulas with high safety were screened by MTT assay and their anti-PRRSV effects were evaluated.
Results
MT, GA and TS inhibited PRRSV replication in a dose-dependent manner. CCL8, IFIT3, IFIH1 and ISG15 were the top four proteins in expression level change in cells treated with MT, GA or TS. The relative expression of IFIT3, IFIH1, ISG15 and IFN-β mRNAs were consistent with the results of proteomics. The component formula (0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS) showed synergistic anti-PRRSV effect.
Conclusions
The component formula possessed anti-PRRSV activity in vitro, in which the optimal dosage on PAMs was 0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS. Compatibility of the formula was superposition of the same target with GA and TS, while different targets of MT. IFN-β may be one of the targets of the component formula possessed anti-PRRSV activity.
Funder
Shanxi Province Science Foundation for Youths National Natural Science Foundation of China Innovation Projects of College of Veterinary Medicine, Shanxi Agricultural University
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference46 articles.
1. Zhao D, Yang B, Yuan X, Shen C, Zhang D, Shi X, Zhang T, Cui H, Yang J, Chen X, Hao Y, Zheng H, Zhang K, Liu X. Advanced research in porcine reproductive and respiratory syndrome virus co-infection with other pathogens in swine. Front Vet Sci. 2021;8:699561. 2. Renken C, Nathues C, Swam H, Fiebig K, Weiss C, Eddicks M, Rizmann M, Nathues H. Application of an economic calculator to determine the cost of porcine re-productive and respiratory syndrome at farm-level in 21 pig herds in Germany. Porcine Health Manag. 2021;7:3. 3. Jiang YF, Li GX, Yu LX, Li LW, Zhang YJ, Zhou YJ, Tong W, Liu CL, Gao F, Tong GZ. Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) from 1996 to 2017 in China. Front Microbiol. 2020;11:618. 4. Xu H, Song SJ, Zhao J, Leng CL, Fu J, Li C, Tang YD, Xiang LR, Peng JM, Wang Q, Zhao HY, An TQ, Cai XH, Zhang HL, Tian ZJ. A potential endemic strain in China: NADC34-like porcine reproductive and respiratory syndrome virus. Transbound Emerg Dis. 2020;67:1730–8. 5. Zhang ZD, Qu XY, Zhang HL, Tang XD, Bian T, Sun YJ, Zhou MM, Ren FB, Wu P. Evolutionary and recombination analysis of porcine reproductive and respiratory syndrome isolates in China. Virus Genes. 2020;56:673.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|