Author:
Wan Chunhe,Chen Cuiteng,Cheng Longfei,Liu Rongchang,Shi Shaohua,Fu Guanghua,Chen Hongmei,Fu Qiuling,Huang Yu
Abstract
Abstract
Background
Classic goose parvovirus (cGPV) causes high mortality and morbidity in goslings and Muscovy ducklings. Novel GPV (N-GPV) causes short beak and dwarfism syndrome (SBDS) in Cherry Valley ducks, Pekin ducks and Mule ducks. Both cGPV and N-GPV have relatively strict host specificity, with obvious differences in pathogenicity. Specific detection of cGPV and N-GPV may result in false positives due to high nucleotide similarity with Muscovy duck parvovirus (MDPV). The aim of this study was to develop a highly specific, sensitive, and reliable TaqMan real-time PCR (TaqMan qPCR) assay for facilitating the molecular detection of cGPV and N-GPV.
Results
After genetic comparison, the specific conserved region (located on the NS gene) of cGPV and N-GPV was selected for primer and probe design. The selected regions were significantly different from MDPV. Through a series of optimization experiments, the limit of detection was 50.2 copies/μl. The assay was highly specific for the detection of cGPV and N-GPV and no cross-reactivity was observed with E. coli., P.M., R.A., S.S., MDPV, N-MDPV, DAdV-A, DEV, GHPV, DHAV-1, DHAV-3, ATmV, AIV, MDRV and N-DRV. The assay was reproducible with an intra-assay and inter-assay variability of less than 2.37%. Combined with host specificity, the developed TaqMan qPCR can be used for cGPV and N-GPV in differential diagnoses. The frequency of cGPV in Muscovy duckling and goslings was determined to be 12 to 44%, while N-GPV frequency in Mule ducks and Cherry Valley ducks was 36 to 56%. Additionally, fluorescence-positive signals can be found in Mule duck embryos and newly hatched Mule ducklings. These findings provide evidence of possible vertical transmission of N-GPV from breeding Mule ducks to ducklings.
Conclusions
We established a quantitative platform for epidemiological investigations and pathogenesis studies of cGPV and N-GPV DNA that was highly sensitive, specific, and reproducible. N-GPV and cGPV infections can be distinguished based on host specificity.
Funder
Natural Science Foundation of China
China Agriculture Research System
Fujian Academy of Agriculture Science Innovative Research Team Project
Fujian Academy of Agriculture Science Young Talent Program Project
Fujian Public Welfare Project
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference25 articles.
1. Zadori Z, Erdei J, Nagy J, Kisary J. Characteristics of the genome of goose parvovirus. Avian Pathol. 1994;23:359–64.
2. Zádori Z, Stefancsik R, Rauch T, Kisary J. Analysis of the complete nucleotide sequences of goose and muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology. 1995;212:562–73.
3. Wan C, Chen H, Fu Q, Fu G, Cheng L, Shi S, Huang Y, Hu K. Genomic characterization of goose parvovirus and Muscovy duck parvovirus co-infection in Fujian, China. Kafkas Univ Vet Fak Derg. 2015;21:923–8.
4. Fang D. Introduction of goose plague. Chin J Vet Med. 1962;8:19–20 (in Chinese).
5. Lin S, Yu X, Chen B, Chen B. Diagnosis of a novel viral infectious disease in Muscovy ducklings. Chin J Anim Poul Infect Dis. 1991;2:27–8 (in Chinese).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献