Correlation of Streptococcus agalactiae concentration on immune system and effective dose of inactivated vaccine for Chitralada 3 strain Nile tilapia (Oreochromis niloticus) in Thailand

Author:

Khunrang Thanakorn,Pooljun Chettupon,Wuthisuthimethavee Suwit

Abstract

AbstractThe main pathogen in the Nile tilapia (Oreochromis niloticus) culture, Streptococcus agalactiae, causes economic harm. Infected fish’s immune systems worked to eliminate of the infection. This study demonstrated the effect of different bacterial concentrations on tilapia immunity and optimal vaccine concentration to induce immunity in Nile tilapia. The experiment was performed at 102, 104, 106, 108, and 1010 CFU/fish of S. agalactiae compared with the control (PBS) through intraperitoneal injection for 72 h. Fish that survived employed to gather blood, and immune responses were assessed through measures of the survival rate include blood smears, antibody titers, and immunoglobulin gene expression. The vaccine experiment investigated formalin-inactivated S. agalactiae vaccination and administered S. agalactiae injections for 14 days. The statistic revealed a significant difference (p < 0.05) in the 108 and 1010 CFU/fish injections with high survival rates (62.22% and 53.33%, respectively). Immunoglobulin gene expression was highly represented in the 1010 CFU/fish injection; antibody titers were significantly improved from the control group, and antibody levels were high in the 1010 CFU/fish injection. The analysis of blood cell types using the blood smear method revealed a progressive increase in leucocytes, particularly lymphocytes, neutrophils, and monocytes, in the treatment group compared to the control group. Moreover, the erythrocyte/leucocyte ratio decreased significantly in response to the high bacterial injection, indicating an increase in leucocytes. Conversely, the erythrocyte level stayed ed within at the 7.03–9.70 × 102 cell/ml and shown no significant difference (p > 0.05). The lymphocytes were almost two-fold in 1010 CFU/fish compared to 108 CFU/fish. As depicted in the lowest concentration of 106 CFU/fish, the vaccine performance had a high relative percent survival (RPS) at 86.67%. This research suggested that the tilapia infected with high S. agalactiae concentrations did not affect the mortality of the tilapia, and vaccine concentration was effective in 106 CFU/fish.

Funder

Walailak University Graduate Research Fund

the Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Kasetsart University, Bangkok 10900, Thailand

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Reference41 articles.

1. Taksin Y, Ratanatrivong W, Uraiwan S et al. Growth improvement of Chitralada strain tilapia (Oreochromis niloticus Linn.). Proceedings of the 49th Kasetsart University Annual Conference, Kasetsart University, Thailand, 1– 4 February 2011. Fisheries. 2011;3:150– 158.

2. Amal M, Zamri-Saad M. Streptococcosis in tilapia (Oreochromis niloticus): a review. Pertanika J Trop Agric Sci. 2011;34:195–206.

3. Phuoc NN, Linh NTH, Crestani C et al. Effect of strain and environmental conditions on the virulence of Streptococcus agalactiae (Group B Streptococcus; GBS) in red tilapia (Oreochromis sp.). Aquaculture 2020;1534: 736256. https://doi.org/10.1016/j.aquaculture.2020.736256

4. Wessels MR, Streptolysin S. J Infect Dis Suppl. 2005;192:13–5. https://doi.org/10.1086/430625

5. Locke JB, Colvin KM, Varki N. Streptococcus iniae β-hemolysin Streptolysin S is a virulence factor in fish infection. Dis Aquat Org. 2007;76:17–26. https://doi.org/10.3354/dao076017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3