Impact of bisphenol-A on the spliceosome and meiosis of sperm in the testis of adolescent mice

Author:

Wang Yongjie,Wu Yanyan,Zhang Shilei

Abstract

Abstract Background Bisphenol-A (BPA) has estrogenic activity and adversely affects humans and animals' reproductive systems and functions. There has been a disagreement with the safety of BPA exposure at Tolerable daily intake (TDI) (0.05 mg/kg/d) value and non-observed adverse effect level (5 mg/kg/d). The current study investigated the effects of BPA exposure at various doses starting from Tolerable daily intake (0.05 mg/kg/d) to the lowest observed adverse effect level (50 mg/kg/d) on the testis development in male mice offspring. The BPA exposure lasted for 63 days from pregnancy day 0 of the dams to post-natal day (PND) 45 of the offspring. Results The results showed that BPA exposure significantly increased testis (BPA ≥ 20 mg/kg/d) and serum (BPA ≥ 10 mg/kg/d) BPA contents of PND 45 mice. The spermatogenic cells became loose, and the lumen of seminiferous tubules enlarged when BPA exposure at 0.05 mg/kg/d TDI. BPA exposure at a low dose (0.05 mg/kg/d) significantly reduced the expression of Scp3 proteins and elevated sperm abnormality. The significant decrease in Scp3 suggested that BPA inhibits the transformation of spermatogonia into spermatozoa in the testis. The RNA-seq proved that the spliceosome was significantly inhibited in the testes of mice exposed to BPA. According to the RT-qPCR, BPA exposure significantly reduced the expression of Snrpc (BPA ≥ 20 mg/kg/d) and Hnrnpu (BPA ≥ 0.5 mg/kg/d). Conclusions This study indicated that long-term BPA exposure at Tolerable daily intake (0.05 mg/kg/d) is not safe because low-dose long-term exposure to BPA inhibits spermatogonial meiosis in mice testis impairs reproductive function in male offspring.

Funder

National Natural Science Foundation of China

Start-up Project of High-Level Talents Scientific Research in Shihezi University

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3