Identification and evaluation in-vitro of conserved peptides with high affinity to MHC-I as potential protective epitopes for Newcastle disease virus vaccines

Author:

Tataje-Lavanda LuisORCID,Málaga EdithORCID,Verastegui ManuelaORCID,Mayta Huatuco EgmaORCID,Icochea ElianaORCID,Fernández-Díaz ManoloORCID,Zimic MirkoORCID

Abstract

Abstract Background Newcastle disease (ND) is a major threat to the poultry industry, leading to significant economic losses. The current ND vaccines, usually based on active or attenuated strains, are only partially effective and can cause adverse effects post-vaccination. Therefore, the development of safer and more efficient vaccines is necessary. Epitopes represent the antigenic portion of the pathogen and their identification and use for immunization could lead to safer and more effective vaccines. However, the prediction of protective epitopes for a pathogen is a major challenge, especially taking into account the immune system of the target species. Results In this study, we utilized an artificial intelligence algorithm to predict ND virus (NDV) peptides that exhibit high affinity to the chicken MHC-I complex. We selected the peptides that are conserved across different NDV genotypes and absent in the chicken proteome. From the filtered peptides, we synthesized the five peptides with the highest affinities for the L, HN, and F proteins of NDV. We evaluated these peptides in-vitro for their ability to elicit cell-mediated immunity, which was measured by the lymphocyte proliferation in spleen cells of chickens previously immunized with NDV. Conclusions Our study identified five peptides with high affinity to MHC-I that have the potential to serve as protective epitopes and could be utilized for the development of multi-epitope NDV vaccines. This approach can provide a safer and more efficient method for NDV immunization.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Reference36 articles.

1. Romanutti C, Keller L, Zanetti FA. Current status of virus-vectored vaccines against pathogens that affect poultry. Vaccine. 2020;38:6990–7001.

2. Dimitrov KM, Afonso CL, Yu Q, Miller PJ. Newcastle disease vaccines—A solved problem or a continuous challenge? Vet Microbiol. 2017;206:126–36.

3. OIE World Organization for Animal Health. Capítulo 3.3.14. Enfermedad de Newcastle. Manual de la OIE sobre animales terrestres 2018. Available from: https://www.woah.org/fileadmin/Home/esp/Health_standards/tahm/3.03.14_Enfermedad_Newcastle.pdf. Accessed 1 Jan 2023.

4. Shankar BP. Common respiratory diseases of poultry. Vet World. 2008;1:217–9.

5. Miller PJ, Decanini EL, Afonso CL. Newcastle disease: Evolution of genotypes and the related diagnostic challenges. Infect Genet Evol. 2010;10:26–35.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3