Use of nCounter mRNA profiling to identify at-arrival gene expression patterns for predicting bovine respiratory disease in beef cattle

Author:

Scott Matthew A.,Woolums Amelia R.,Swiderski Cyprianna E.,Thompson Alexis C.,Perkins Andy D.,Nanduri Bindu,Karisch Brandi B.,Goehl Dan R.

Abstract

Abstract Background Transcriptomics has identified at-arrival differentially expressed genes associated with bovine respiratory disease (BRD) development; however, their use as prediction molecules necessitates further evaluation. Therefore, we aimed to selectively analyze and corroborate at-arrival mRNA expression from multiple independent populations of beef cattle. In a nested case-control study, we evaluated the expression of 56 mRNA molecules from at-arrival blood samples of 234 cattle across seven populations via NanoString nCounter gene expression profiling. Analysis of mRNA was performed with nSolver Advanced Analysis software (p < 0.05), comparing cattle groups based on the diagnosis of clinical BRD within 28 days of facility arrival (n = 115 Healthy; n = 119 BRD); BRD was further stratified for severity based on frequency of treatment and/or mortality (Treated_1, n = 89; Treated_2+, n = 30). Gene expression homogeneity of variance, receiver operator characteristic (ROC) curve, and decision tree analyses were performed between severity cohorts. Results Increased expression of mRNAs involved in specialized pro-resolving mediator synthesis (ALOX15, HPGD), leukocyte differentiation (LOC100297044, GCSAML, KLF17), and antimicrobial peptide production (CATHL3, GZMB, LTF) were identified in Healthy cattle. BRD cattle possessed increased expression of CFB, and mRNA related to granulocytic processes (DSG1, LRG1, MCF2L) and type-I interferon activity (HERC6, IFI6, ISG15, MX1). Healthy and Treated_1 cattle were similar in terms of gene expression, while Treated_2+ cattle were the most distinct. ROC cutoffs were used to generate an at-arrival treatment decision tree, which classified 90% of Treated_2+ individuals. Conclusions Increased expression of complement factor B, pro-inflammatory, and type I interferon-associated mRNA hallmark the at-arrival expression patterns of cattle that develop severe clinical BRD. Here, we corroborate at-arrival mRNA markers identified in previous transcriptome studies and generate a prediction model to be evaluated in future studies. Further research is necessary to evaluate these expression patterns in a prospective manner.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Reference88 articles.

1. USDA. Part IV: Health and health management on U.S. feedlots with a capacity of 1,000 or more head. Ft. Collins: USDA-APHIS-VS-CEAH-NAHMS; 2011.

2. Wilson BK, Richards CJ, Step DL, Krehbiel CR. BEEF SPECIES SYMPOSIUM: best management practices for newly weaned calves for improved health and well-being1. J Anim Sci. 2017;95(5):2170–82.

3. Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW. The epidemiology of bovine respiratory disease: what is the evidence for preventive measures? Can Vet J. 2010;51(12):1351–9.

4. Grissett GP, White BJ, Larson RL. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex. J Vet Intern Med. 2015;29(3):770–80.

5. Fulton RW. Viruses in bovine respiratory disease in North America. Vet Clin N Am Food Anim Pract. 2020;36(2):321–32.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3