Development of a CRISPR/Cas12a-based fluorescent detection method of Senecavirus A

Author:

He Wei,Liao Kai,Li Ruixue,Peng Wanqing,Qian Bingxu,Zeng Dexin,Tang Fang,Xue Feng,Jung Yong Sam,Dai Jianjun

Abstract

Abstract Background Senecavirus A (SVA), identified in 2002, is known to cause porcine idiopathic vesicular disease (PIVD), which presents with symptoms resembling other vesicular diseases. This similarity complicates field diagnosis. Conventional molecular diagnostic techniques are limited by their cost, sensitivity, and requirement for complicated instrumentation. Therefore, developing an effective and accurate diagnostic method is crucial for timely identification and isolation of affected pigs, thereby preventing further disease spread. Methods In this study, we developed a highly-specific and ultra-sensitive SVA detection method powered by CRISPR/Cas12a. To enhance the availability in laboratories with varied equipment conditions, microplate reader and ultraviolet light transilluminator were introduced. Moreover, PCR amplification has also been incorporated into this method to improve sensitivity. The specificity and sensitivity of this method were determined following the preparation of the recombinant Cas12a protein and optimization of the CRISPR/Cas12a-based trans-cleavage system. Results The method demonstrated no cross-reactivity with ten kinds of viruses of swine. The minimum template concentration required to activate substantial trans-cleavage activity was determined to be 106 copies/µL of SVA templates. However, when PCR amplification was incorporated, the method achieved a detection limit of one copy of SVA templates per reaction. It also exhibited 100% accuracy in simulated sample testing. The complete testing process does not exceed three hours. Conclusions Importantly, this method utilizes standard laboratory equipment, making it accessible for use in resource-limited settings and facilitating widespread and ultra-sensitive screening during epidemics. Overall, the development of this method not only broadens the array of tools available for detecting SVA but also holds significant promise for controlling the spread of PIVD.

Funder

Natural Science Foundation of Ningxia Province

Xinjiang Key Laboratory of Electronic Information Materials and Devices

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3