Oral phage therapy with microencapsulated phage A221 against Escherichia coli infections in weaned piglets

Author:

Mao Xinyu,Wu Yuxing,Ma Runwen,Li Lei,Wang Leping,Tan Yizhou,Li Ziyong,Liu Hui,Han Kaiou,Cao Yajie,Li Yinan,Peng Hao,Li Xun,Hu Chuanhuo,Wang Xiaoye

Abstract

Abstract Background Escherichia coli (E. coli) is a common pathogen that often causes diarrhea in piglets. Since bacteria are becoming more and more resistant to antibiotics, phages have become a promising alternative therapy. However, the therapy of oral phage often fails to achieve the desired effect. A novel phage named A221 was isolated by using E. coli GXXW-1103 as host strain, characterized by electron microscopy, genomic sequencing and analyzed by measuring lysis ability in vitro. Results Phage A221 was identified as a member of Ackermannviridae, Aglimvirinae, Agtrevirus with 153297 bp genome and effectively inhibited bacterial growth in vitro for 16 h. This study was conducted to evaluate the therapeutic effect of oral microencapsulated phage A221 on E. coli GXXW-1103 infections in weaned piglets. The protective effect of phage was evaluated by body weight analysis, bacterial load and histopathological changes. The results showed that with the treatment of phage A221, the body weight of piglets increased, the percentage of Enterobacteriaceae in duodenum decreased to 0.64%, the lesions in cecum and duodenum were alleviated, and the bacterial load in the jejunal lymph nodes, cecum and spleen were also significantly different with infected group (P < 0.001). Conclusions The results showed that phage A221 significantly increased the daily weight gain of piglets, reduced the bacterial load of tissues and the intestinal lesions, achieved the same therapeutic effect as antibiotic Florfenicol. Taken together, oral microencapsulated phage A221 has a good therapeutic effect on bacterial diarrhea of weaned piglets, which provides guidance for the clinical application of phage therapy in the future.

Funder

The Guangxi Key R&D Program

The National Technical System Construction Project for Waterfowl Industry

The Guangxi Broiler Industry Innovation Team Construction Project

The Key Research and Development Program of Nanning

The Key R&D Program of Liangqing District

The Major Science and Technology Project of Liangqing District

The Key R&D Program of Fangchenggang City

The Key Research and Development of Wuming District

The Jiangnan Key Research and Development

Microbiota and soil remediation

Mechanism of phage resistance to Colistin sulfate in Escherichia coli

Construction and improvement of veterinary epidemic prevention system for breeding pig farms of Fuxile company

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The current state of phage therapy in livestock and companion animals;Journal of Animal Science and Technology;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3