Dietary carbon loaded with nano-ZnO alters the gut microbiota community to mediate bile acid metabolism and potentiate intestinal immune function in fattening beef cattle

Author:

Zhang Haibo,Guan Weikun,Li LizhiORCID,Guo Dongsheng,Zhang Xiangfei,Guan Jiuqiang,Luo Runxiao,Zheng Siying,Fu Jiangwen,Cheng Yingying,He Qin

Abstract

Abstract Background To our knowledge, carbon loaded with nano-ZnO (NZnOC) represents a new nutritional additive for the animal husbandry industry. However, the mechanism by which NZnOC mediates beef cattle growth and intestinal health is not fully understood. This study aimed to investigate the effects of carbon loaded with nano-ZnO (NZnOC) supplementation on growth performance, gut microbiota, bile acid (BAs) metabolism and intestinal immunity in fattening cattle. Twenty cattle (16 ± 0.95 months) were randomly assigned to two dietary groups: CON (control, without feed additive) and NZnOC (diet supplemented with 80 mg NZnOC/kg diet dry matter basic) for 60 d. The colon digesta microbiota composition and BAs concentration were determined by microbiota metagenomics and gas chromatography methods, respectively. Results The results showed that the NZnOC-supplemented cattle had greater final weight, average daily gain and gain-to-feed ratio than those in the CON group. Cattle fed the NZnOC diet had a higher relative abundance of the secondary BAs synthesizing phyla Firmicutes, Tenericutes and Actinobacteria than those fed the CON diet. Dietary supplementation with NZnOC increased the relative abundance of the secondary BAs synthesis microbiota genera Clostridium, Ruminococcus, Eubacterium, and Brevibacillus in colon digesta. Cattle fed the NZnOC diet had increased activities of 3α-hydroxysteroid dehydrogenase (EC: 1.1.1.52) and bile acid-CoA ligase BaiB (EC: 6.2.1.7) in the colon digesta compared with those fed the CON diet. The primary BAs taurocholic acid, taurochenodeoxycholic acid and taurodeoxycholate acid were significantly decreased by dietary NZnOC supplementation, while the secondary BAs deoxycholic acid, taurolithocholic acid, beta-muricholic acid, 12-ketolithocholic acid and ursodeoxycholic acid were significantly increased. Dietary supplementation with NZnOC increased the mRNA abundance of G protein-coupled bile acid receptor 1, protein kinase cAMP-activated catalytic subunit alpha, cyclic-AMP response element binding protein 1 and interleukin (IL)-10 in the colon mucosa of cattle, while the mRNA abundance of tumor necrosis factor and IL-1β were significantly decreased. Conclusions In summary, dietary supplementation with NZnOC can facilitate the growth performance and intestinal immune function of cattle by improving BAs metabolism. NZnOC can be supplemented in the diet as a safe regulator of gut microbiota and as a feed additive in the ruminants industry.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Department of Education Science and Technology Research Project

Jiangxi Provincial Department of Science and Technology

Science and Technology Program of Jingdezhen City

Natural Science Foundation of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3