Author:
Wysong Amy,Ortiz Priscilla,Bittel Douglas,Ott Lindsey,Karanu Francis,Filla Michael,Stehno-Bittel Lisa
Abstract
Abstract
Background
The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures.
Results
The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability.
Conclusions
While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.
Funder
Young Leaders of the Americas Initiative
KCUMB Student Research Fund
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference46 articles.
1. Zomer H, Vidane A, Goncalves N, Ambrosio C. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning. 2015;8:125–34.
2. Golpanian S, Wolf A, Hatzistergos K, Hare J. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev. 2016;96:1127–68.
3. Peng Y, Ke M, Xu L, Liu L, Chen X, Xia W, et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation. 2013;85(1):161–8.
4. Regmi S, Pathak S, Kim J, Yong C, Jeong J. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives. Eur J Cell Biol. 2019;98:151041.
5. Marx C, Silveira M, Nardi N. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Devel. 2015;24(7):803–13.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献