Abstract
Abstract
Background
The prevalence of gastrointestinal (GI) neoplastic polyps in Jack Russell terriers (JRTs) has increased in Japan since the late 2000s. Recently, we demonstrated that JRTs with GI polyps harbor identical germline variant in the APC gene (c.[462_463delinsTT]) in the heterozygous state. Thus, this disease is an autosomal dominant hereditary disorder. Although the affected JRTs have distinct features, such as the development of multiple GI polyps and an early age of disease onset, genetic testing is indispensable for a definitive diagnosis. Here, polymerase chain reaction (PCR)-based assays capable of detecting germline APC variant were designed and validated using synthetic wild-type and mutant DNAs and genomic DNAs from carrier and non-carrier dogs.
Result
First, the PCR-restriction fragment length polymorphism (PCR-RFLP) assay was developed by taking advantage of the germline APC variant creating a new restriction site for MseI. In the PCR-RFLP assay, the 156-bp region containing the variant site was amplified by PCR and subsequently digested with MseI, yielding diagnostic 51 and 58 bp fragments from the mutant allele and allowing determination of the APC genotypes. It was possible to determine the genotypes using genomic DNA extracted from the peripheral blood, buccal swab, or formalin-fixed paraffin-embedded tissue. Next, a TaqMan duplex real-time PCR assay was developed, where a 78-bp region flanking the variant was amplified in the presence of wild-type allele- and mutant allele-specific fluorescent probes. Using blood-derived DNA, altogether 40 cycles of PCR amplification determined the APC genotypes of all examined samples by measuring the fluorescence intensities. Importantly, false-positive and false-negative errors were never detected in both assays.
Conclusion
In this study, we developed highly reliable genetic tests for hereditary GI polyposis in JRTs, providing accurate assessment of the presence of the causative germline APC variant. The genotyping assays could contribute to the diagnosis and prevention of hereditary GI polyposis in dogs.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference19 articles.
1. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ 3rd, Zody MC, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438(7069):803–19.
2. Giger U, Sargan DR, McNiel EA. Breed-specific Hereditary Diseases and Genetic Screening. In: Ostrander EA, Giger U, Lindblad-Toh K, editors. The Dog and Its Genome. New York: Cold Spring Harbor Laboratory Press; 2006. p. 249–89.
3. Gough A, Thomas A, O'Neill D. Introduction. In: Alex Gough AT, O'Neill D, editors. Breed predispositions to disease in dogs and cats. 3 edn. Hoboken: Wiley; 2018. p. 1–16.
4. Slutsky J, Raj K, Yuhnke S, Bell J, Fretwell N, Hedhammar A, Wade C, Giger U. A web resource on DNA tests for canine and feline hereditary diseases. Vet J. 2013;197(2):182–7.
5. Saito T, Nibe K, Chambers JK, Uneyama M, Nakashima K, Ohno K, Tsujimoto H, Uchida K, Nakayama H. A histopathological study on spontaneous gastrointestinal epithelial tumors in dogs. J Toxicol Pathol. 2020;33(2):105–13.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献