Abstract
Abstract
Background
Mycoplasma hyopneumoniae (Mhp) and porcine circovirus type 2 (PCV2) are two important pathogens causing Mycoplasma pneumonia of swine (MPS) and porcine circovirus diseases and porcine circovirus-associated diseases (PCVDs/PCVADs), respectively, and resulted in considerable economic loss to the swine industry worldwide. Currently, vaccination is one of the main measures to control these two diseases; however, there are few combination vaccines that can prevent these two diseases. To determine the effect of combination immunization, we developed capsid-derived (Cap) virus-like particles (VLPs) of PCV2 and a new recombinant chimera composed of the P97R1, P46, and P42 antigens of Mhp. Then we investigated the immune responses induced by the immunization with this combination vaccine in mice and piglets.
Results
The high level antibodies against three protein antigens (P97R1, P46, and P42 of Mhp) were produced after immunization, up to or higher than 1:400,000; the antibody levels in Pro group continuously increased throughout the 42 days for all the antigens tested. The lymphocyte proliferative response in PCV2 group was stronger than that in PBS, VP, Mhp CV in mice. The antibody levels for Cap remained stable and reached the peak at 35 DAI. The IFN-γ and IL-4 in sera were significantly enhanced in the Pro group than that in the negative control-VP group on Day 14 and 28 post-the first immunization in piglets.
Conclusions
Above all, the combination immunization could induce humoral and cellular immune responses against all four antigens in mice and piglets. Therefore, our approach is a simple and effective vaccination strategy to protect pigs against MPS and PCVD/PCVAD.
Funder
Zhejiang Province Public Welfare Technology Application Research Project
Key Research and Development Program of Zhejiang Province
The Science Foundation of Zhejiang Sci-Tech University
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference50 articles.
1. Haesebrouck F, Pasmans F, Chiers K, Maes D, Ducatelle R, Decostere A. Efficacy of vaccines against bacterial diseases in swine: what can we expect? Vet Microbiol. 2004;100(3–4):255–68.
2. Holst S, Yeske P, Pieters M. Elimination of Mycoplasma hyopneumoniae from breed-to-wean farms: a review of current protocols with emphasis on herd closure and medication. J Swine Health Prod. 2015;23(6):321–30.
3. Burnett TA, Dinkla K, Rohde M, Chhatwal GS, Uphoff C, Srivastava M, Cordwell SJ, Geary S, Liao X, Minion FC, Walker MJ, Djordjevic SP. P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells. Mol Microbiol. 2006;60(3):669–86.
4. de Oliveira NR, Jorge S, Gomes CK, Rizzi C, Pacce VD, Collares TF, Monte LG, Dellagostin OA. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice. Vet Microbiol. 2017;201:146–53.
5. Galli V, Simionatto S, Marchioro SB, Fisch A, Gomes CK, Conceicao FR, Dellagostin OA. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine. 2012;31(1):135–40.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献