Safety studies and viral shedding of intramuscular administration of oncolytic vaccinia virus TG6002 in healthy beagle dogs

Author:

Béguin JérémyORCID,Nourtier Virginie,Gantzer Murielle,Cochin Sandrine,Foloppe Johann,Balloul Jean-Marc,Laloy Eve,Tierny Dominique,Klonjkowski Bernard,Quemeneur Eric,Maurey Christelle,Erbs Philippe

Abstract

Abstract Background Cancer is a leading cause of mortality for both humans and dogs. As spontaneous canine cancers appear to be relevant models of human cancers, developing new therapeutic approaches could benefit both species. Oncolytic virotherapy is a promising therapeutic approach in cancer treatment. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1 that encodes a protein which catalyses the conversion of the non-toxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. Previous studies have shown the ability of TG6002 to infect and replicate in canine tumor cell lines, and demonstrated its oncolytic potency in cell lines, xenograft models and canine mammary adenocarcinoma explants. Moreover, 5-fluorouracil synthesis has been confirmed in fresh canine mammary adenocarcinoma explants infected with TG6002 with 5-fluorocytosine. This study aims at assessing the safety profile and viral shedding after unique or repeated intramuscular injections of TG6002 in seven healthy Beagle dogs. Results Repeated intramuscular administrations of TG6002 at the dose of 5 × 107 PFU/kg resulted in no clinical or biological adverse effects. Residual TG6002 in blood, saliva, urine and feces of treated dogs was not detected by infectious titer assay nor by qPCR, ensuring the safety of the virus in the dogs and their environment. Conclusions These results establish the good tolerability of TG6002 in healthy dogs with undetectable viral shedding after multiple injections. This study supports the initiation of further studies in canine cancer patients to evaluate the oncolytic potential of TG6002 and provides critical data for clinical development of TG6002 as a human cancer therapy.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3