Author:
Malgarin Carolina M.,Moser Fiona,Pasternak J. Alex,Hamonic Glenn,Detmer Susan E.,MacPhee Daniel J.,Harding John C. S.
Abstract
Abstract
Background
Mechanisms of fetal death following maternal PRRSV2 infection remain uncharacterized, although hypoxia from umbilical cord lesions and/or placental detachment due to apoptosis are hypothesized. We performed two experiments examining hypoxia and apoptosis in PRRSV-infected and non-infected, third-trimester fetuses to elucidate possible associations with fetal death. Fetuses were selected based on four phenotypic infection groups: fetuses from non-challenged control gilts (CTRL); low viral load fetuses (LVL; Exp 1) or uninfected fetuses (UNINF; Exp 2) from inoculated gilts; viable high viral load fetuses (HVL-VIA); and HVL meconium-stained fetuses (HVL-MEC).
Results
In experiment 1, paraffin embedded fetal tissues collected 21 days post maternal infection (DPI) were examined for DNA fragmentation associated with apoptosis. Positively stained foci were larger and more numerous (P < 0.05) in heart, liver, and thymus of HVL-VIA and HVL-MEC compared to CTRL and LVL fetuses. In experiment 2, group differences in gene expression within the hypoxia (HIF1a, IDO1, VEGFa, LDHA, NOS2, NOX1) and apoptosis (CASP3, CASP7, CASP8, CASP9, RIPK1, RIPK3) pathways were assessed by RT-qPCR in fetal tissues collected at 12 DPI. High viral load fetuses showed differential expression relative to the CTRL and UNINF (P < 0.05 for all). Brain tissue from HVL-VIA and HVL-MEC fetuses presented increased expression of CASP7, CASP8, RIPK3, HIF1a and IDO1. Fetal heart showed increased expression of CASP8, HIF1a, IDO and NOX1 and a decrease in NOS2 expression in infected groups. CASP7, CASP9, RIPK1 and RIPK3 were only increased in the heart of HVL-VIA while VEGFa was only increased for HVL-MEC fetuses. Thymus from HVL-MEC had decreased expression of CASP9 and there was increased IDO1 in all infected fetuses.
Conclusions
There is strong evidence of apoptosis occurring in the heart, liver and thymus of highly viral load fetuses at 21 DPI. Furthermore, there was clear upregulation of apoptotic genes in the heart of high viral load infected fetuses and less prominent upregulation in the brain of PRRSV-infected fetuses, whereas thymus appears to be spared at 12 DPI. There was no strong evidence of hypoxia at 12 DPI in brain and thymus but some indication of hypoxia occurring in fetal heart.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference44 articles.
1. Holtkamp DJ, Kliebenstein JB, Neumann EJ, Zimmerman JJ, Rotto HF, Yoder TK, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Heal Prod. 2013;21(2):72–84.
2. Mengeling WL, Lager KM, Vorwald AC. Temporal characterization of transplacental infection of porcine fetuses with porcine reproductive and respiratory syndrome virus. Am J Vet Res. 1994;55(10):1391–8.
3. Lager KM, Halbur PG. ERRADOGross and microscopic lesions in porcine fetuses infected with porcine reproductive and respiratory syndrome virus. J Vet Diagn Investig. 1996;8(1996):275–82.
4. Rossow KD, Laube KL, Goyal SM, Collins JE. Fetal microscopic lesions in porcine reproductive and respiratory syndrome virus-induced abortion. Vet Pathol. 1996;33(1):95–9.
5. Suleman M, Novakovic P, Malgarin CM, Detmer SE, Harding JCS, MacPhee DJ. Spatiotemporal immunofluorescent evaluation of porcine reproductive and respiratory syndrome virus transmission across the maternal-fetal interface. Pathog Dis. 2018;76(5):1–14.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献