Abstract
Abstract
Background
Multimorbidity is highly relevant for both service commissioning and clinical decision-making. Optimization of variables assessing multimorbidity in order to enhance chronic care management is an unmet need. To this end, we have explored the contribution of multimorbidity to predict use of healthcare resources at community level by comparing the predictive power of four different multimorbidity measures.
Methods
A population health study including all citizens ≥18 years (n = 6,102,595) living in Catalonia (ES) on 31 December 2014 was done using registry data. Primary care service utilization during 2015 was evaluated through four outcome variables: A) Frequent attendants, B) Home care users, C) Social worker users, and, D) Polypharmacy. Prediction of the four outcome variables (A to D) was carried out with and without multimorbidity assessment. We compared the contributions to model fitting of the following multimorbidity measures: i) Charlson index; ii) Number of chronic diseases; iii) Clinical Risk Groups (CRG); and iv) Adjusted Morbidity Groups (GMA).
Results
The discrimination of the models (AUC) increased by including multimorbidity as covariate into the models, namely: A) Frequent attendants (0.771 vs 0.853), B) Home care users (0.862 vs 0.890), C) Social worker users (0.809 vs 0.872), and, D) Polypharmacy (0.835 vs 0.912). GMA showed the highest predictive power for all outcomes except for polypharmacy where it was slightly below than CRG.
Conclusions
We confirmed that multimorbidity assessment enhanced prediction of use of healthcare resources at community level. The Catalan population-based risk assessment tool based on GMA presented the best combination of predictive power and applicability.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Ward BW, Schiller JS, Goodman RA. Multiple chronic conditions among US adults: a 2012 update. Prev Chronic Dis. 2014;11:130389.
2. Barnett K, Mercer SWS, Norbury M, Watt GG, Wyke S, Guthrie B, et al. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet (London, England). 2012;380(9836):37–43.
3. Huntley AL, Johnson R, Purdy S, Valderas JM, Salisbury C. Measures of multimorbidity and morbidity burden for use in primary care and community settings: a systematic review and guide. Ann Fam Med. 2012;10(2):134–41.
4. Nolte E, McKee eds. M. Caring for people with chronic conditions: a health system perspective: Open University Press; 2008. 259 p
5. Gerteis J, Izrael D, Deitz D, LeRoy L, Ricciardi R. R MMultiple Chronic Conditions Chartbook 2010 Medical expenditure panel survey data: Agency for Healthcare Research and Quality; 2010.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献