Detection of atrial fibrillation using a nonlinear Lorenz Scattergram and deep learning in primary care

Author:

Yao Yi,Jia Yu,Wu Miaomiao,Wang Songzhu,Song Haiqi,Fang Xiang,Liao Xiaoyang,Li Dongze,Zhao Qian

Abstract

Abstract Background Atrial fibrillation (AF) is highly correlated with heart failure, stroke and death. Screening increases AF detection and facilitates the early adoption of comprehensive intervention. Long-term wearable devices have become increasingly popular for AF screening in primary care. However, interpreting data obtained by long-term wearable ECG devices is a problem in primary care. To diagnose the disease quickly and accurately, we aimed to build AF episode detection model based on a nonlinear Lorenz scattergram (LS) and deep learning. Methods The MIT-BIH Normal Sinus Rhythm Database, MIT-BIH Arrhythmia Database and the Long-Term AF Database were extracted to construct the MIT-BIH Ambulatory Electrocardiograph (MIT-BIH AE) dataset. We converted the long-term ECG into a two-dimensional LSs. The LSs from MIT-BIH AE dataset was randomly divided into training and internal validation sets in a 9:1 ratio, which was used to develop and internally validated model. We built a MOBILE-SCREEN-AF (MS-AF) dataset from a single-lead wearable ECG device in primary care for external validation. Performance was quantified using a confusion matrix and standard classification metrics. Results During the evaluation of model performance based on the LS, the sensitivity, specificity and accuracy of the model in diagnosing AF were 0.992, 0.973, and 0.983 in the internal validation set respectively. In the external validation set, these metrics were 0.989, 0.956, and 0.967, respectively. Furthermore, when evaluating the model’s performance based on ECG records in the MS-AF dataset, the sensitivity, specificity and accuracy of model diagnosis paroxysmal AF were 1.000, 0.870 and 0.876 respectively, and 0.927, 1.000 and 0.973 for the persistent AF. Conclusions The model based on the nonlinear LS and deep learning has high accuracy, making it promising for AF screening in primary care. It has potential for generalization and practical application.

Funder

Sichuan Province Science and Technology Support Program

Sichuan Provincial Health Commission

Sichuan University West China Nursing Discipline Development Special Fund Project

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612.

2. Ziff OJ, Carter PR, McGowan J, Uppal H, Chandran S, Russell S, et al. The interplay between atrial fibrillation and heart failure on long-term mortality and length of stay: insights from the, United Kingdom ACALM registry. Int J Cardiol. 2018;252:117–21. https://doi.org/10.1016/j.ijcard.2017.06.033.

3. Friberg L, Rosenqvist M, Lindgren A, Terént A, Norrving B, Asplund K. High prevalence of atrial fibrillation among patients with ischemic stroke. Stroke. 2014;45(9):2599–605. https://doi.org/10.1161/strokeaha.114.006070.

4. Svennberg E, Tjong F, Goette A, Akoum N, Di Biase L, Bordachar P, et al. How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. EP Europace. 2022;24(6):979–1005. https://doi.org/10.1093/europace/euac038.

5. Brandes A, Stavrakis S, Freedman B, Antoniou S, Boriani G, Camm AJ, et al. Consumer-led screening for Atrial Fibrillation: Frontier Review of the AF-SCREEN International collaboration. Circulation. 2022;146(19):1461–74. https://doi.org/10.1161/circulationaha.121.058911.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3