Computer-aided molecular modeling and structural analysis of the human centromere protein–HIKM complex

Author:

Uzoeto Henrietta Onyinye,Cosmas Samuel,Ajima Judith Nnedimkpa,Arazu Amarachukwu Vivian,Didiugwu Chizoba Maryann,Ekpo Daniel Emmanuel,Ibiang Glory Omini,Durojaye Olanrewaju AyodejiORCID

Abstract

Abstract Background Protein–peptide and protein–protein interactions play an essential role in different functional and structural cellular organizational aspects. While Cryo-EM and X-ray crystallography generate the most complete structural characterization, most biological interactions exist in biomolecular complexes that are neither compliant nor responsive to direct experimental analysis. The development of computational docking approaches is therefore necessary. This starts from component protein structures to the prediction of their complexes, preferentially with precision close to complex structures generated by X-ray crystallography. Results To guarantee faithful chromosomal segregation, there must be a proper assembling of the kinetochore (a protein complex with multiple subunits) at the centromere during the process of cell division. As an important member of the inner kinetochore, defects in any of the subunits making up the CENP-HIKM complex lead to kinetochore dysfunction and an eventual chromosomal mis-segregation and cell death. Previous studies in an attempt to understand the assembly and mechanism devised by the CENP-HIKM in promoting the functionality of the kinetochore have reconstituted the protein complex from different organisms including fungi and yeast. Here, we present a detailed computational model of the physical interactions that exist between each component of the human CENP-HIKM, while validating each modeled structure using orthologs with existing crystal structures from the protein data bank. Conclusions Results from this study substantiate the existing hypothesis that the human CENP-HIK complex shares a similar architecture with its fungal and yeast orthologs, and likewise validate the binding mode of CENP-M to the C-terminus of the human CENP-I based on existing experimental reports. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3