Histological, ultrastructural, and biochemical study on the possible role of Panax ginseng in ameliorating liver injury induced by Lambda cyhalotherin

Author:

Abdul-Hamid ManalORCID,Mohamed Hanaa M.,Abd El-Twab Sanaa M.,Zaied Karim

Abstract

Abstract Background Lambda-cyhalotherin (LCT) is a pyrithroid type 2 pesticide that is broadly utilized in pest control in public health, animal health, and agriculture. Although claiming that LCT has a low mammalian toxicity, several investigations reported its mammalian hepatotoxicity by mediating oxidative stress causes severe hepatotoxicity and liver damage. Results LCT significantly decreased catalase (CAT), superoxide dismutase (SOD), and total thiol (T. thiol) and increased lipid peroxidation (LPO). mRNA and protein expression levels of p53 were upregulated, whereas Bcl-2 mRNA and protein expression levels were downregulated in LCT-intoxicated animals. Also, light microscopic and ultrastructure studies for liver tissues of LCT-intoxicated animals showed mononuclear leukocytic infiltration in the parenchyma, congested portal vein with thickened wall, and proliferation of bile duct and hepatocytes with cytoplasmic vacuolations, fatty changes, and collagen fibers. Panax ginseng co-treatment attenuated oxidative stress biomarkers. Both tested doses of Panax ginseng (100 and 200 mg /kg b. wt./day) significantly decreased p53 and elevate Bcl-2 mRNA and protein expression levels and reveals significant amelioration and restoration of normal histology and ultrastructure of liver, but 200 mg/kg b. wt. of Panax ginseng seems to be more potent. Conclusion Panax ginseng exhibited ameliorative effect against hepatic oxidative stress, apoptosis, histopathological, and ultrastructural changes induced by LCT.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3