Abstract
Abstract
Background
Recently, transition-metal oxides have represented an exciting research topic, especially their fundamental and technological aspects. Here, vanadium pentoxide nanoparticles (V2O5-NPs) were synthesized through the thermal decomposition of ammonium meta-vanadate. In the current study, we investigated the photocatalytic activity of V2O5-NPs to develop and regulate the V2O5 structure for adsorption applications.
Results
The obtained nanoparticles were inspected by X-ray diffraction, scanning electron microscope, transmission electron microscope, and differential thermogravimetric analysis, which proved the formation of the nanorod structure. The ultraviolet–visible absorption spectra revealed a 2.26 eV band gap for V2O5-NPs that correlates with indirect optical transitions. The photocatalytic activity of the V2O5-NPs was investigated by methylene blue (MB) degradation in aqueous solutions. An initial concentration of 25 ppm, a temperature of 40 °C, 40 mg of adsorbent mass, and 1 h of contact time were the optimal conditions for the efficient removal of MB that could reach up to 92.4%. The mechanism of MB photocatalytic degradation by V2O5-NPs is explained.
Conclusions
The photodegradation data better fit with the Langmuir isotherm model. The thermodynamic parameters indicated that the adsorption was spontaneous and endothermic. The reaction kinetics followed the pseudo-second-order model. Thermally prepared V2O5-NPs offer a simple and efficient approach for selective MB removal from an aqueous medium.
Graphical abstract
Funder
Academy of Scientific Research and Technology
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献