Optimizing aseptic and serum milieu for the isolation of human whole umbilical cord tissue-derived mesenchymal stem cells

Author:

Chakraborty ElizaORCID,Chaudhary Shikha,Saragade Yogita,Sharma Suyash,John Jeswin,Tyagi Namrata,Mishra Kunal

Abstract

Abstract Background Mesenchymal stem cells (MSCs) have become an attractive tool for tissue engineering and targets in clinical transplantation due to their regeneration potential and immune-suppressive capacity. The human umbilical cord, which is discarded at birth, can provide an inexhaustible source of stem cells for therapy. They are reported to contain immune privilege cells which may be suitable for allogenic-based therapies. However, the use of MSCs for therapeutic application is based on their subsequent large-scale in vitro expansion. A fast and efficient protocol for the generation of large quantities of MSCs is required to meet the clinical demand and biomedical research needs. Results MSCs were isolated from the umbilical cord by explants and enzymatic digestion and cultured in the appropriate growth medium resulted in the propagation of more than 1X 108 cells within 15 days from the single umbilical cord. Conclusion The isolation efficiency, cell yield, colony-forming unit fibroblast (CFU-F), growth kinetics, phenotypic characteristics of UCMSCs were determined.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3