QSAR modeling, molecular docking, dynamic simulation and ADMET study of novel tetrahydronaphthalene derivatives as potent antitubercular agents

Author:

Moulishankar Anguraj,Sundarrajan T.ORCID

Abstract

Abstract Background Tuberculosis is an air-borne contagious disease caused by slow-growing Mycobacterium tuberculosis (Mtb). According to Global Tuberculosis Report 2022, 1.6 million people were infected by tuberculosis in 2021. The continuing spread of drug-resistant tuberculosis (TB) is one of the most difficult challenges to control the tuberculosis. So new drug discovery is essential to the treatment of tuberculosis. This study aims to develop a QSAR model to predict the antitubercular activity of tetrahydronaphthalene derivatives. The QSARINS was used in this study to develop the QSAR predictive model. Results A number of tetrahydronaphthalene derivatives with MIC90 values were obtained from the literature to develop the QSAR predictive model. The compounds were divided into two sets: a training set consisting of 39 compounds and a test set containing 13 compounds. The best predictive Model 4 has R2: 0.8303, Q2LOO: 0.7642, LOF: 0.0550, Q2-F1: 0.7190, Q2-F2: 0.7067, Q2-F3: 0.7938 and CCCext: 0.8720. Based on the developed QSAR equation, the new compounds were designed and subjected to molecular docking, molecular dynamics and ADMET analysis. Conclusion In the QSAR model, the molecular descriptors of MATS8s, Chi4, bcutv8, Petitjeant and fr_aniline were highly influenced the antitubercular activity. The developed QSAR model helps to predict the antitubercular activity of tetrahydronaphthalene derivatives.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3