Isolation and phenotypic characterization of bacteriophage SA14 with lytic- and anti-biofilm activity against multidrug-resistant Enterococcus faecalis

Author:

Ali ZienabORCID,Dishisha TarekORCID,El-Gendy Ahmed O.ORCID,Azmy Ahmed F.ORCID

Abstract

Abstract Background Antimicrobial resistance is a growing global health concern demanding more attention and action at the international-, national- and regional levels. In the present study, bacteriophage was sought as a potential alternative to traditional antibiotics. Results Vancomycin-resistant Enterococcus faecalis was isolated from a urine sample. Partial 16S rRNA-gene sequencing and VITEK®2 system were employed for its identification, biochemical characterization, and antibiotic susceptibility testing. The isolate was resistant to eight antibiotics (out of 11): vancomycin, gentamicin (high-level synergy), streptomycin (high-level synergy), ciprofloxacin, levofloxacin, erythromycin, quinupristin/dalfopristin, and tetracycline. Bacteriophage SA14 was isolated from sewage water using the multidrug-resistant isolate as a host. Transmission electron micrographs revealed that phage SA14 is a member of the Siphoviridae family displaying the typical circular head and long non-contractile tail. The phage showed characteristic stability to a wide range of solution pH and temperatures, with optimal stability at pH 7.4 and 4 °C, while showing high specificity toward their host. Based on the one-step growth curve, the phage's latent period was 25 min, and the burst size was 20 PFU/ml. The lytic activity of phage SA14 was evaluated at various multiplicities of infection (MOI), all considerably suppressed the growth of the host organism. Moreover, phage SA14 displayed a characteristic anti-biofilm activity as observed by the reduction in adhered biomass and -viable cells in the pre-formed biofilm by 19.1-fold and 2.5-fold, respectively. Conclusion Phage therapy can be a valuable alternative to antibiotics against multi-drug resistant microorganisms.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3