Uncovering and evaluating coconut oil-loaded silica nanoemulsion as anti-viral, bacterial, and fungal: synthesis, fabrication, characterization, and biosafety profiles

Author:

Elnosary Mohamed E.,Aboelmagd Hesham A.,Sofy Ahmed R.,Hmed Ahmed A.,Refaey Ehab E.,Ali Sayeda M.,Hady Mayssa Abdel

Abstract

Abstract Background Coconut oil, a natural component abundant in terpenoids, possesses various physiological functions. The global concern over the spread of viral infections and antimicrobial-resistant bacteria and fungi has highlighted the need for novel treatments. Coconut oil, with its known antimicrobial properties, presents an attractive candidate for combating these pathogens. This study aims to investigate the potential of coconut oil-loaded silica nanoemulsion (ON@SiO2) as a novel therapeutic agent against viral, antimicrobial-resistant bacteria, and fungal pathogens. Results The study synthesized coconut oil-loaded silica nanoemulsion (ON@SiO2) using an eco-friendly, cost-effective method with native coconut oil (CO). Characterization confirmed successful synthesis on the nanoscale with good distribution. Three nanoemulsion samples (ON-1@SiO2, ON-2@SiO2, and ON-3@SiO2) were prepared, with average particle sizes of 193 nm, 200 nm, and 325 nm, respectively. Evaluation of cytotoxicity on Vero-E6 cell lines indicated safety of ON-0@SiO2 and ON-3@SiO2, with CC50 values of 97.5 mg/ml and 89.1 mg/ml, respectively. ON-3@SiO2 demonstrated anti-Herpes I and II (HSV1 and HSV2) activity, with IC50 values of 1.9 mg/ml and 2.1 mg/ml, respectively. Additionally, ON-3@SiO2 exhibited promising antibacterial activity against E. coli, P. aeruginosa, S. aureus, and B. subtilis, with MIC values of 25 mg/ml, 12.5 mg/ml, 25 mg/ml, and 3.12 mg/ml, respectively. Conclusions ON-3@SiO2 showed potential antifungal activity against C. albicans, a unicellular fungus, with an MIC of 12.5 mg/ml. Overall, ON@SiO2 possesses antiviral, antibacterial, and antifungal properties.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3