Author:
Sundararaju Sathyavathi,Arumugam Manjula,Bhuyar Prakash
Abstract
Abstract
Background
Detoxification of heavy metal pollutants in wastewater has become a serious problem to surrounding environment. This research was conducted to utilize a potential heavy metal-resistant bacterium for the remediation of cobalt metal and simultaneous synthesis of cobalt oxide nanoparticles in the form of powder for various industrial applications. Metal oxide nanoparticles have great applications in electrochemical devices such as supercapacitors, biosensors, and batteries.
Method
A heavy metal-resistant bacterium Microbacterium sp. MRS-1 isolated from electroplating industrial effluent reduced cobalt ions from an initial concentration of 200 mg/L to 26 mg/L were analyzed by atomic absorption spectroscopy. Instrumental analysis of bacterially synthesized Co3O4 has been characterized. Cytotoxicity of synthesized nanoparticles was assessed by MTT assay.
Results
Microbacterium sp. MRS-1 isolated from electroplating industrial effluent was found to be suitable for cobalt oxide nanoparticles as it showed tolerance towards high concentration of metal. The nutrient broth containing metal solution and Microbacterium sp. MRS-1 showed color change from light pink to dark pink indicated the formation of extracellular nanoparticles. It also converted soluble cobalt salts into less soluble cobalt oxide nanoparticles outside the cell which allows easy recovery of nanoparticles without the destruction of cells and simultaneous detoxification of toxic metal ions. Electron microscopic imaging verified that nanoparticles were predominantly surrounding the bacterial cells and SEM imaging revealed that the produced particles were in the range of 10–100 nm in size. XRD spectrum exhibited 2θ values were corresponding to cubic face-centered cobalt oxide (Co3O4) nanoparticles.
Conclusion
The present study investigated new prospective for eco-friendly detoxification of toxic heavy metal Co from metal-polluted sites and the production of cobalt oxide nanoparticles in powder form for clinical and other industrial applications.
Funder
Council of Scientific and Industrial Research, India
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)
Reference29 articles.
1. Fernández-García M, Rodriguez JA (2011) Metal oxide nanoparticles Encyclopedia of inorganic and bioinorganic chemistry
2. Gouda M, Aljaafari A, Al-Fayz Y, Boraie WE (2015) Preparation and characterization of some nanometal oxides using microwave technique and their application to cotton fabrics. J Nanomater 16(1):163
3. Raman V, Suresh S, Savarimuthu PA, Raman T, Tsatsakis AM, Golokhvast KS, Vadivel VK (2016) Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Exp Ther Med 11(2):553–560
4. Kaviyarasu K, Raja A, Devarajan PA (2013) Structural elucidation and spectral characterizations of Co3O4 nanoflakes. Spectrochim Acta A Mol Biomol Spectrosc 114:586–591
5. Diallo A, Beye AC, Doyle TB, Park E, Maaza M (2015) Green synthesis of Co3O4 nanoparticles via Aspalathus linearis: physical properties. Green Chem Lett Rev 8(3-4):30–36
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献