Investigation of the corrosion inhibition potentials of some 2-(4-(substituted)arylidene)-1H-indene-1,3-dione derivatives: density functional theory and molecular dynamics simulation

Author:

Oyeneyin Oluwatoba EmmanuelORCID,Ojo Nathanael DamilareORCID,Ipinloju NureniORCID,Agbaffa Eric BamideleORCID,Emmanuel Abiodun Vestor

Abstract

Abstract Background Corrosion is a threat to material strength and durability. Electron-rich organic inhibitor may offer good corrosion mitigation potentials. In this work, anti-corrosion potentials of nine derivatives of 1H-indene-1,3-dione have been investigated using density functional theory (DFT) approach and molecular dynamics (MD) simulation. Chemical reactivity descriptors like energies of lowest unoccupied molecular orbital (ELUMO), highest occupied molecular orbital (EHOMO), electron affinity (A), ionization potential (I), energy gap (ΔEgap), global hardness (η), global softness (σ), electronegativity (χ), electrophilicity (ω), number of transferred electrons (ΔN) and back-donation (ΔEback-donation) were computed at DFT/B3LYP/6-31G(d) theoretical level. The local reactive sites and the charge partitioning on the compounds were studied using Fukui indices and molecular electrostatic potential (MEP) surface analysis. The adsorption behavior and the binding energy of the inhibitors on Fe (110) surface in hydrochloric acid solution were investigated using MD simulation. Results The high chemical reactivity, kinetic instability and good corrosion inhibition potentials demonstrated by the inhibitors are rationalized based on their high EHOMO, A, σ, ΔN, ΔEback-donation, and low ΔEgap, ELUMO, I and η. A wide difference of approximately 2.4–3.2 eV between the electronegativities of iron and the 1H-inden-1,3-diones suggests good charge transfer tendency from the latter to the low-lying vacant d-orbitals of iron. The heteroatoms (O and N) and the aromatic moieties are the nucleophilic sites on the inhibitors for effective adsorption on the metal surface as shown by condensed Fukui dual functions and MEP analysis. The MD simulation shows good interaction and strong binding energy between the inhibitor and Fe (110) surface. Conclusions Effective surface coverage and displacement of H3O+, Cl and water molecules from Fe (110) surface by the inhibitors indicate good corrosion inhibition properties of the inden-1,3-diones. 2-((4,7-dimethylnaphthalen-1-yl)methylene)-1H-indene-1,3(2H)-dione display low energy gap, strongest binding interaction and most stabilized iron-inhibitor configuration, hence, the best anti-corrosion potential. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3