The effect of slope height and angle on the safety factor and modes of failure of 3D slopes analysis using limit equilibrium method

Author:

Kumar SumitORCID,Choudhary Shiva Shankar,Burman Avijit

Abstract

Abstract Background It is a well-known fact that the safety of slopes majorly depends on several factors such as geometry, soil properties. The safety factor might change significantly depending on the soil type and the slope’s shape. The knowledge of the nature of the change in the safety factor due to the change in the slope’s height and angle is essential for implementing an effective strategy of increasing the safety factor for any slope stability problem. The influence of geometric shapes on the stability of the slope needs to be properly investigated through three-dimensional slope stability analysis, as the three-dimensional analysis is suitable for all slopes, even those which invalidate the plane-strain conditions. Results To calculate the three-dimensional safety factor, multiple analyses of three homogenous soil slopes with different soil properties were conducted by varying slope height, angle, and combinations. Each slope's height and angle were recorded to identify the types of slope failure. The analysis’s findings showed that while a decrease in height raises the safety factor nonlinearly, a decrease in slope angle increases the safety factor almost linearly. Base failure is the most likely failure for slopes with a height less than 4.0 m and an angle of inclination less than 18°. On clay and sandy clay soils, toe slide is the most common type of slope failure. The expected failure type will be either toe or face failure when the slope's height and base angle exceeds 5.0 m and 22°, respectively. This study also found that the three-dimensional safety factor for soil slope is generally 10–20% higher than the two-dimensional factor of slope safety. Conclusions The slope’s nature depended on the soil type and slope form, but the safety factor increased as the slope angle and height decreased. To determine the most efficient method for slope stabilization, it is necessary to do an extensive study on slope height and angle reduction techniques. It should be ensured that the sliding mass of soil does not rise, resulting in a potential slope failure. The present study will help identify the correlation between the height and base inclination of the slope with the expected nature of slope failure. The present study helps to investigate the variation of the safety factor of a three-dimensional homogenous soil slope subjected to self-weight only. The study can be further extended to observe the variation of the factor of safety for a 3D slope subjected to pore water pressure and seismic loading also.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three-Dimensional Slope Failure Response Based on Limit Equilibrium Method;Transportation Infrastructure Geotechnology;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3