Additively manufactured metastructure design for broadband radar absorption

Author:

Abdullahi M. B.ORCID,Ali M. H.

Abstract

Abstract Background Recent advances in material science and electronics led to the rapid development of communication devices and radar detection techniques resulting in an ever-increasing demand for improved stealth performance of air vehicles during scouts. Absorber design employing metastructure concept has recently become a popular approach to improving radar stealth performance. Metastructure permits the realization of desired absorption characteristics by careful design of geometrical structures and material compositions. In this study, a metastructure designed based on graphite SLS composite for radar absorption has been demonstrated. The unit cell of the proposed structure is simulated by COMSOL Multiphysics to determine the frequency-dependent absorption characteristic of the structure. It is fabricated by using a low-cost selective laser sintering technique of additive manufacturing technology. Results The prototype, while measured, shows effective absorption bandwidth of 1.04 GHz that is in reasonable agreement with the simulated response of 2.08 GHz. The optimized structure exhibits ≤ − 10 dB reflectivity within a broad frequency range extending from 7.60 GHz to 18.00 GHz under normal incidence in both TE and TM polarizations. Furthermore, the absorption performance under different polarizations and incident angles has been investigated. Results indicate that the absorber displays polarization indifference and exhibits a wide-angle of incidence tolerance of up to 45° in TE polarization and 30° in TM polarizations. Conclusion In this paper, the feasibility of using graphite SLS material to design and 3D print a metastructure design for radar absorbing has been established as confirmed by the simulation and the measurement results. The advantages of low cost, ultra-broad operating band, wide-angle of incidence feature, and polarization insensitivity qualifies the proposed absorber for stealth and electromagnetic shielding applications.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3