Effect of annealing temperature on the synthesis and photocatalytic properties of Bi0.65K0.2Ba0.15FeO3 perovskite-like nanoparticle synthesized by sol-gel method

Author:

Haruna AbdurrashidORCID,Abdulkadir Ibrahim,Idris Sulaiman Ola

Abstract

Abstract Background BiFeO3 shows promising applications in photocatalytic degradation, purification process, and in clean energy generation. The various fascinating properties of bismuth ferrite nanoparticles can be improved by doping the material at either of the A or B sites to give it extra photocatalytic advantage toward decreasing the energy bandgap and other photophysical properties of the material. Results In this research, pure Bi0.65K0.2Ba0.15FeO3 perovskite material was synthesized using the sol-gel method via citric acid route in the presence of sodium dodecyl sulfate (SDS). The powdered nanoparticles were annealed at different annealing temperatures of 600, 700, and 800 °C each for 4 h in a muffle furnace and coded K2BFO 600, K2BFO 700, and K2BFO 800 corresponding to the annealing temperature of each portion. The powder nanoparticles were characterized using powdered X-ray diffraction (PXRD) to determine the crystallite structure. The samples displayed similar peak patterns with increase in intensity as the annealing temperature is increased indicating an increase in crystallinity. The impurity peaks in K2BFO 800, however, show that the sample may contain a secondary phase. Scanning electron microscopy (SEM) was used to determine the morphology, and UV-Vis spectroscopy indicated that all the powders were photoactive within the visible region of the electromagnetic spectrum. ATR-FTIR spectra of the samples were collected to study the formation and phase purity of the B-site in the perovskite structures. The photocatalytic performance of the powder was tested on methylene blue dye under visible light irradiation for the degradation studies. All powders showed photocatalytic ability after 2 h of irradiation with the powder annealed at 800 °C being better. The photocatalytic activities of the powders showed improvement on addition of 2 drops of 1 M H2O2 (80% degradation for K2BFO 800). The bandgap energy of K2BFO 800, 700, and 600 was estimated at approximately 2.00, 2.12, and 2.18 eV, respectively, using Tauc’s equation. The improved activity is as a result of photoabsorption of visible light by the doped powders causing generation of electrons and holes. The kinetic studies were carried out and the mechanisms of the photocatalytic reaction proposed. Conclusion The effect of annealing temperature on synthesis of the material shows enhanced photoactivity in the presence of hydrogen peroxide leading to improved performance for the degradation of MB, and the catalyst can be said to be a good candidate for the treatment of waste materials.

Publisher

Springer Science and Business Media LLC

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3