Binary and ternary inclusion complexation of lapatinib ditosylate with β-cyclodextrin: preparation, evaluation and in vitro anticancer activity

Author:

Mane Preeti TanajiORCID,Wakure Balaji SopanraoORCID,Wakte Pravin ShridharORCID

Abstract

Abstract Background Lapatinib ditosylate, an efficient tyrosine kinase inhibitor for breast cancer, poses pharmacokinetic issues, hence developing its oral delivery system is troublesome. The poor aqueous solubility of this medicament is a key impediment in developing its successful formulation. So, the current study aims to improve water solubility of Lapatinib ditosylate by using complexation technique with β-cyclodextrin and a suitable ternary agent. Results Binary and ternary complexes of Lapatinib ditosylate were synthesized by means of kneading and lyophilization using β-cyclodextrin and PVP K30. As a ternary agent, various hydrophilic polymers, as well as organic acids, were assessed, and PVP K30 was chosen for the final formulation based on its stability constant and complexation efficiency. When compared to pure Lapatinib ditosylate, both inclusion complexes demonstrated improved solubility, and drug dissolution. Differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), Fourier transform infrared (FTIR), and scanning electron microscopic (SEM) techniques, all validated the complex formation. Docking studies picturized the geometry of Lapatinib ditosylate in β-cyclodextrin cavity. Using MCF-7 cell lines, investigation of anticancer activity of the pure drug and its synthesized complexes was carried out and the results revealed that the complexes had stronger anticancer activity than Lapatinib ditosylate alone. Conclusions Overall, it can be concluded that Lapatinib ditosylate complexation increased its aqueous solubility, resulting in its increased dissolution and in vitro anticancer activity in a breast cancer cell line.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3