Anticancer potential of four triterpenoids against NCI-60 human tumor cell lines

Author:

Irungu Beatrice NjeriORCID,Nyangi Mary,Ndombera Fidelis Toloyi

Abstract

Abstract Background The burden of cancer incidences and mortality is rapidly increasing worldwide resulting in an increased demand for new therapies. Secondary metabolites extracted from medicinal plants have significantly contributed toward discovery of new cancer therapies some of which are in clinical use. In this study, anticancer potential of four triterpenoids, namely oleanonic acid (EK-2), 3-epi-oleanolic acid (EK-8), 1,2,3,22,23-pentahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (EK-4) and 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosatetraene (EK-9), extracted from Ekebergia capensis Sparrm root bark was evaluated. Results We employed CLC-Pred to initially evaluate cytotoxicity of previously isolated compounds in silico where predictions revealed high probability of bioactivity. The compounds were then submitted to the National Cancer Institute (NCI), Developmental Therapeutics Program, for bioactivity evaluation against NCI-60 human tumor cell lines. The four compounds demonstrated a range of potencies at a concentration of 10 µM. The results revealed that EK-9 was the most potent with mean growth percent of 32.84 and cases of lethality (negative growth percent) against two leukemia cell lines (HL-60 (TB) and RPMI-8226) and HT29 (colon cancer) and SK-MEL-5 (melanoma). This molecule was further evaluated in a five-dose assay where notable growth inhibition against leukemia cells, HL-60 (TB), RPMI-8226 and K-562 was observed with growth inhibitory activity (GI50) values of 3.10, 3.74 and 5.07 µM, respectively. In addition, total growth inhibition was observed at 11.2 μM and 18.9 μM for HL-60 (TB) and RPMI-8226 cells, respectively, partly accounting for the negative growth percent. Conclusion The study has demonstrated anticancer properties of the four triterpenoids with compound EK-9 being the most potent overall having selective bioactivity in leukemia and breast cancer cells. Further studies focusing on elucidating its mechanism of action will be useful in exploration of the therapeutic potential of triterpenoids in general.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3