Hybrid chitosan gold nanoparticles for photothermal therapy and enhanced cytotoxic action of 6-mercaptopurine on breast cancer cell line

Author:

Faid Amna H.ORCID,Hussein Fatma El Zahraa,Mostafa Elham M.,Shouman Samia A.,Badr Yehia A.,Sliem Mahmoud A.

Abstract

Abstract Background One of the most popular anti-inflammatory and anti-leukemic medications is 6-mercaptopurine, along with its riboside derivatives. Because of their potent adverse effects and limited biological half-life, they are rarely used. These problems might be solved by a novel medication delivery technique based on gold nanoparticles (AuNPs). In present work, gold/chitosan nanohybrid was manufactured and assessed for photothermal therapy as well as a drug carrier to minimize the unwanted harmful effects of 6-Mercaptopurine (6-MP). We estimate loading of 6-MP on gold nanoparticles by chitosan reduction (Au@CS NPs) creating (Au@CS-6MP). Results AuNPs were green sensitized in one step via chitosan. UV–visible spectroscopy, Zeta potential, TEM, FTIR spectroscopy, and HPLC technique for loading efficiency were used to characterize AuNPs and Au@CS-6MPC NPS. Our results estimate that AuNPs and Au@CS-6MPC NPS with small sizes of 16 ± 2 and 20 ± 4 nm, respectively, and Zeta potential 53.6 ± 5.2 and 55 ± 3 mV, respectively, and loading efficiency of 52% were achieved. Cytotoxicity of the Au@CS-6MPC NPs was significantly increased compared to free 6MP with IC50 1.11 µM. Cell viability was inhibited in AuNPs exposed to DPSS laser light, reaching 10% inhibition after 8 min. Conclusions The prepared Au@CS-6MPC NPs resulted in an additive effect in therapeutic managing of breast cancer. It can be predicted that this nanocomposite along with synergistic effect of laser light will definitely result in better therapeutic efficacy and reduced side effects of 6-MP in a combination photothermal chemotherapy treatment. This combination can be explored as future alternative for cancer therapy.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3