Rydberg energies and transition probabilities of Li I for np–ms (m ≤ 5) transitions

Author:

Siddiq R.,Hameed M. N.,Zaheer M. H.,Khan M. B.,Uddin Z.ORCID

Abstract

Abstract Background Mathematical modeling provides grounds for understanding scientific systems theoretically. It serves as a guide for experimentalists in determining directions of investigation. Recently, the Covid-19 pandemic has caused disturbances in almost every walk of life. Scientists have played their role and have continued research on the effects of the pandemic. Various mathematical models have been used in different branches of science (Djilali et al. in Phys Scr 96 12 124016, 2021; Math Biosci Eng 18(6):8245–8256, 2021; Zeb et al. in Alex Eng J 61(7):5649–5665). Well-established mathematical models give results close to those obtained by experiments. The Weakest Bound Electron Potential Model is one such model, which explains hydrogen-like atoms and ions. This model has been used extensively for hydrogen-like atoms and ions to calculate energies of Rydberg levels and ionization energies. This model has been used extensively for hydrogen-like atoms and ions to calculate energies of Rydberg levels and ionization energies. Results This paper presents the energies of the Rydberg series, 2s2ns, and 2s2np of Li I, calculated using WBEPM. The energies are used to calculate transition probabilities from np to 2s, 3s, 4s, and 5s levels. The transition probabilities are compared with corresponding values in published data where available. The agreement with known values is good; most of the transition probabilities calculated in this work are new. A computer program was developed to find the value of the dipole matrix element. The calculations were further verified by calculating the lifetimes of some low-lying levels. Conclusions Four series of Li I have been studied, and energies of the Rydberg levels in the series were calculated. The energies then are used to calculate transition probabilities from np to ms transitions, where m = 2, 3, 4, & 5 and n = 1–15. The results are compared where available. An excellent agreement with previously published data shows the reliability of calculations. Most of the transition probabilities are new.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3