Biosensing and anti-inflammatory effects of silver, copper and iron nanoparticles from the leaf extract of Catharanthus roseus

Author:

Sultana Mst.Jesmin,Nibir Al Ibne Shahariar,Ahmed Fazle Rabbi Shakil

Abstract

Abstract Background In this study, we present a low-cost, environmentally friendly method for producing silver, copper, and iron nanoparticles using fresh Catharanthus roseus leaf extract. The biomolecules found in the plant extract play a crucial role as stabilizing and reducing agents. The spectral profile of the UV–visible spectrophotometer was measured to confirm and identify the biosynthesized nanoparticles. The synthesized nanoparticles were tested for biosensing activities and anti-inflammatory effects. Result UV–visible spectra showed a prominent surface resonance peak of 415 nm, 300 nm, and 400 nm, corresponding to the formation of silver, copper, and iron nanoparticles, respectively. The in vitro anti-inflammatory properties of the synthesized AgNPs, CuNPs, and FeNPs showed the maximum inhibition of protein denaturation at 58%, 54.15%, and 44.26% at a concentration of 400 µg/ml, respectively. Furthermore, at a 400 µg/ml concentration, Diclofenac, utilized as a control, showed a maximal inhibition of 93.37%. According to the biosensing activity, these nanoparticles are also a good source for biosensing hazardous heavy salts. So, this article provides the first description of the silver, copper, and iron nanoparticles from Catharanthus roseus leave biosensing capabilities and anti-inflammatory characteristics. Conclusion Overall, this study revealed that due to their biocompatibility, silver, copper, and iron nanoparticles could be appealing and environmentally acceptable options that could be used as innovative therapeutic agents for the prevention and treatment of inflammation. The primary outcome of the research will be the development of potential pharmaceutical uses for the C. roseus medicinal plant in the biomedical and nanotechnology-based industries.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3