Recent advances in solar photovoltaic materials and systems for energy storage applications: a review

Author:

Dada ModupeolaORCID,Popoola Patricia

Abstract

AbstractBackgroundIn recent years, solar photovoltaic technology has experienced significant advances in both materials and systems, leading to improvements in efficiency, cost, and energy storage capacity. These advances have made solar photovoltaic technology a more viable option for renewable energy generation and energy storage. However, intermittent is a major limitation of solar energy, and energy storage systems are the preferred solution to these challenges where electric power generation is applicable. Hence, the type of energy storage system depends on the technology used for electrical generation. Furthermore, the growing need for renewable energy sources and the necessity for long-term energy solutions have fueled research into novel materials for solar photovoltaic systems. Researchers have concentrated on increasing the efficiency of solar cells by creating novel materials that can collect and convert sunlight into power.Main body of the abstractThis study provides an overview of the recent research and development of materials for solar photovoltaic devices. The use of renewable energy sources, such as solar power, is becoming increasingly important to address the growing energy demand and mitigate the impact of climate change. Hence, the development of materials with superior properties, such as higher efficiency, lower cost, and improved durability, can significantly enhance the performance of solar panels and enable the creation of new, more efficient photovoltaic devices. This review discusses recent progress in the field of materials for solar photovoltaic devices. The challenges and opportunities associated with these materials are also explored, including scalability, stability, and economic feasibility.ConclusionThe development of novel materials for solar photovoltaic devices holds great potential to revolutionize the field of renewable energy. With ongoing research and technological advancements, scientists and engineers have been able to design materials with superior properties such as higher efficiency, lower cost, and improved durability. These materials can be used to enhance the performance of existing solar panels and enable the creation of new, more efficient photovoltaic devices. The adoption of these materials could have significant implications for the transition toward a more sustainable and environmentally friendly energy system. However, there are still challenges to be addressed, such as scalability, stability, potential environmental effects, and economic feasibility, before these materials can be widely implemented. Nonetheless, the progress made in this field is promising and continued reports on the research and development of materials for solar photovoltaic devices are crucial for achieving a sustainable future. The adoption of novel materials in solar photovoltaic devices could lead to a more sustainable and environmentally friendly energy system, but further research and development are needed to overcome current limitations and enable large-scale implementation.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3