In silico screening and molecular docking study of compounds from Pedalium murex L. with Vasopressin2 receptor target for Autosomal Dominant Polycystic Kidney Disease

Author:

Ram Gobind,Kumar Anil,Hemlata ,Singh Gulab,Giri Shiv KumarORCID

Abstract

Abstract Background Autosomal dominant polycystic kidney disease (ADPKD) is frequently inherited disease. The medicinal plant Pedalium murex (P. murex) Linn, that has anti-inflammatory, antiurolithiatic, and diuretic properties, has a greater tendency to cure urinary defects. P. Murex compounds have been studied in order to find an effective treatment against the Vasopressin 2 receptor (V2R), which is a target for ADPKD. The compound structures were designed using ChemSketch software, which was then optimised for the exploration of pharmacokinetic properties. Finally, AutoDock VINA programme was used to execute molecular docking, and the findings were analysed and visualised in Discovery studio visualizer. Results Virtual screening using PyRx software finds seven compounds from P. murex with binding affinities ranging from − 8.6 to − 5.8 kcal/mol, which will be used for further pharmacological characteristics study. Luteolin has a higher druglikeness and an overall drug score of 0.84, indicating as a most suitable compound. Furthermore, luteolin docking and bonding study reveals improved receptor (V2R) H-bonding with Phe105(2.26 and 2.96), Gln119(2.78), and any Lys116(2.16). Conclusions Based on affinity score, screening of various compounds from P. murex against the V2R target for the ADPKD showed that the phytocompound luteolin has superior pharmacological characteristics and bonding. Luteolin from P. murex can be used as a possible therapeutic candidate after rigorous in silico investigation. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3