Assessment of antimicrobial phytopeptides: lipid transfer protein and hevein-like peptide in the prospect of structure, function and allergenic effect

Author:

Azmi Sarfuddin,Khatoon Shahnaaz,Hussain Mohd KamilORCID

Abstract

Abstract Background Antimicrobial peptides (AMPs) are unique natural antibiotics that are crucial effectors of innate immune systems in almost all living organisms. Several different plant antimicrobial peptides have been identified and isolated, demonstrating a high level of protection against various types of bacteria, insects, nematodes and other microbes. Along with antimicrobial function, these peptides play a wide range of crucial function in plants, such as regulation of stomata, ion channel, heavy metals and membrane fluidity. Main body Antimicrobial peptides show a continuum of toxicity for a variety of plants and animals pathogenic microbes and even show cytotoxicity against cancer cells. Numerous studies have shown that transgenic plants have increased the expression of AMP-encoding genes in response to biotic and abiotic stresses, and plants that express transgenic AMP genes are more responsive to biotic, abiotic and other functions. In addition to being a molecule with protective properties, various allergic reactions are associated with some phytopeptides and proteins, in particular non-specific lipid transfer protein (nsLTP) and peptide-like hevein. Pru p3 from peach is the most clinically important allergen within the nsLTP family that cause real food allergies and also triggers extreme clinical reactions. Similarly, latex-fruit syndrome was primarily associated with well-studied latex allergen Hevein (Hev b8, Hev b6) and class I chitinases. Short conclusions Several findings have shown that, in the near future, transgenic plants based on AMPs against the verity of pathogenic fungi, bacteria and other abiotic stresses will be released without any adverse effects. Recent study reason that association of lipid with nsLTP enhances allergic sensitization and hevein-like domain of chitinase I essentially plays a role in cross-sensitivity of latex with different fruits and nuts. This review discusses the structures and various functions of lipid transfer protein and hevein-like peptide.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3